首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为降低电渣钢锭中的总wO,建立了预测界面传质速率的同步反应热-动力学模型,对电渣重熔过程的氧传递行为与电磁-流动-传热-传质进行耦合分析,并提出钢液中wO的控制方法.结果表明,随重熔过程的进行,熔渣中w○FeO和钢液中wO均升高,呈现重熔前期“脱氧”、后期“增氧”的现象,渣池-电极端部和渣池-金属熔滴界面是wO升高的主要位置.当电流为1200~1800A时,熔炼相同长度电极时的钢液中wO从82.4×10-6降低到70.6×10-6;采用惰性气体保护,使钢液中wO从78.7×10-6降低到15.3×10-6;使用70% CaF2+30% Al2O3渣系控制钢液中wO的效果最佳,低w○Al2O3的渣系有利于降低钢液中wO.  相似文献   

2.
纳米氢氧化铝稳定泡沫性能研究   总被引:5,自引:0,他引:5  
通过原位表面活性化可使纳米颗粒变成表面活性颗粒,使其能够吸附在气-液界面上形成颗粒单层,这种颗粒单层类似于表面活性剂在气-液界面上的吸附单分子层,有起泡和稳泡的作用.研究了纳米氢氧化铝与表面活性剂SDS及OP-10复配产生的泡沫的性能.结果表明,以水为溶剂时,OP-10基本不能使纳米氢氧化铝颗粒原位表面活性化,不能在起泡和稳泡方面产生协同效应.而阴离子表面活性剂SDS能够通过静电作用吸附在纳米氢氧化铝颗粒表面,使颗粒表面覆盖一层烷基链而亲水性减弱,从而能以颗粒单层形式吸附在气-液界面上起到起泡和稳泡的作用.当SDS质量分数大于0.6%后,表面活性剂分子在颗粒表面形成双层或多层吸附,打破了活性颗粒的亲水-亲油平衡,纳米颗粒重新转变为强亲水颗粒,起泡、稳泡能力下降.质量分数0.1%纳米Al(OH)3+SDS体系的泡沫封堵性能明显优于单一SDS体系,文中实验条件下阻力因子可达100以上.  相似文献   

3.
以斑铜矿为研究对象,在H2SO4酸性体系中,以NaS2O8为氧化剂,详细考察浸出时间、温度、矿物尺寸、液固比、H2SO4浓度和NaS2O8浓度对铜浸出率的影响.浸出行为表明,斑铜矿浸出动力学行为符合固体膜层的界面传质和扩散的混合控制,表观反应活化能为33.97 kJ/mol,浸出动力学方程为(ln(1-x))/3-1+(1-x)-1/3=kmt.  相似文献   

4.
利用气/液界面自组装法和溶液浸渍转移法制备了单层和双层氧化铟多孔有序气敏薄膜,并对其进行了气敏特性测试,同时利用多物理场耦合进行气敏特性仿真研究.结果表明,制备的气敏薄膜具有规则的孔道结构,孔壁呈现为具有大比表面积的片状结构.基于该气敏材料的气体传感器对丁酮表现出优良的气敏特性,单层In2O3多孔有序气体传感器在最佳工作温度350℃的条件下对质量分数为100×10-6的丁酮的灵敏度为15.37,响应时间仅为4.3s;双层In2O3多孔有序气体传感器在最佳工作温度375℃的条件下对质量分数为100×10-6的丁酮的灵敏度为20.45,响应时间为22.7s.仿真结果与气敏特性测试结果吻合较好.  相似文献   

5.
为了制备兼具防紫外线性能和疏水性能的TPU/TiO2/PDMS复合纤维膜,采用静电纺丝与纳米颗粒超声负载相结合的技术将TiO2纳米颗粒成功地负载于TPU静电纺丝纤维膜中,并用PDMS对负载了TiO2纳米颗粒的TPU静电纺丝纤维膜进行固化处理,SEM结果表明:TPU/TiO2/PDMS复合纤维膜的表面被成功地负载上了TiO2纳米颗粒,且分布较均匀;防紫外测试结果表明TiO2纳米颗粒在纤维膜上的负载使TPU静电纺丝纤维膜的UPF值得到了极大的提升,随着TiO2纳米颗粒负载量的增加,TPU/TiO2/PDMS复合纤维膜的UPF值逐渐增加,且当TiO2纳米颗粒负载量为1.5 wt%时,UPF值大幅提升了75.8%.接触角测试结果表明在TiO2纳米颗粒与PDMS共同构筑的粗糙且低表面能的复合纤维膜表面下,纤维膜的表面由亲水转变为疏水状态,随着TiO2纳米颗粒...  相似文献   

6.
紫外光(UV)诱导纳米颗粒胶体射流加工可实现硬脆晶体材料亚纳米级超光滑表面的加工,根据其材料去除原理可知,伴随抛光过程的进行,胶体中TiO2纳米颗粒表面会吸附一层工件表面的被去除原子,从而影响TiO2纳米颗粒胶体的活性和光催化性.为了实现TiO2纳米颗粒胶体的循环使用,基于O3/UV高级氧化法对使用后的TiO2纳米颗粒胶体再活化机理进行了研究,同时结合紫外光诱导纳米颗粒胶体射流加工系统设计了TiO2纳米颗粒胶体活化系统,对系统内的再活化反应室结构进行了流体动力学仿真,仿真结果表明其结构设计满足TiO2纳米颗粒胶体的活化要求.  相似文献   

7.
采用SBA-15硬模板复制技术合成纳米In2O3样品, 并用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 紫外可见光谱对样品的晶体结构、 晶粒尺寸、 形貌及带隙宽度进行测试, 分析样品的纳米结构对气敏性能的影响机制. 结果表明: 样品为纳米线阵列结构, 三维In2O3纳米线阵列结构由粒径约为15 nm的单晶近球形In2O3颗粒规则有序排列组成, 间距约为1 nm, 带隙宽度为3.63 eV; 当温度为320 ℃, 乙醇气体在空气中的体积比为10-4时, 其灵敏度达42.3. 该纳米结构样品明显优于相同级别纳米颗粒和纳米介孔材料的气敏性能.   相似文献   

8.
采用分子动力学方法对比研究烷烃修饰前后SiO2纳米颗粒在油/水界面的吸附组装行为,分析其密度分布、界面层厚度、界面张力等参量。结果表明:烷烃修饰后纳米颗粒疏水性增强,能自发地快速向油/水界面扩散运移,并在界面形成致密的组装单层膜;烷烃修饰纳米颗粒在油/水界面的吸附能够有效降低界面张力,提高水相对油相的携带能力。  相似文献   

9.
 室温条件下,利用含Fe3+和Fe2+盐为前体的化学共沉淀法,成功地在木材表面上附着纳米磁性γ-Fe2O3颗粒,并经过进一步化学改性后得到超疏水性材料。利用SEM、XRD、VSM及FT-IR等分析技术对样品进行了表征分析。结果显示,磁性粒子的形状类似颗粒状,并均匀地附在木材表面;γ-Fe2O3纳米粒子通过氢键作用与木材表面的羟基相互键合而成功附着在木材表面,并且具有良好的晶型,且磁性γ-Fe2O3纳米颗粒显示出良好的超顺磁性,经过改性的磁化材料具备很好的超疏水性。  相似文献   

10.
在可溶性聚四氟乙烯(PFA)、聚四氟乙烯(PTFE)及环氧树脂(EP)中添加纳米二氧化硅等材料,制备了应用于冷凝式换热器表面的超疏水自清洁性复合涂层。对复合涂层进行接触角、导热系数、耐磨性、结合强度及自清洁性测试,研究其综合性能。测试结果表明,含7.5%~9.4%纳米SiO2的PFA涂层与含1.4%~2.3%纳米SiO2的PTFE涂层接触角均在150°以上,其表面自清洁性优异。添加0.8%~1.7%的石墨可将涂层的导热系数由0.2 W·m-1·K-1提升至2 W·m-1·K-1以上。涂层的耐磨性随SiC含量的增加而提升,对于PFA超疏水涂层,添加SiC能使涂层被砂纸打磨后仍能保持良好的疏水性。EP涂层的结合强度达ASTM(美国材料与试验协会)等级5B,PFA涂层为4B,PTFE涂层为3B。  相似文献   

11.
采用水热方法, 通过调节前驱体的pH值, 得到不同形貌的立方相Lu2O3:Eu3+纳米棒、纳米片和纳米颗粒。利用粉末X射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外(FTIR)光谱、光致发光(PL)谱和荧光寿命(FL)等技术对所制备的纳米晶进行了系列表征。随着纳米晶尺寸的减少, 样品的荧光强度明显减弱, 这是由于吸附在纳米晶表面的OH-含量逐渐增加, 加速了非辐射弛豫从而降低了发光效率。此外, 也观测到源于纳米晶表面Eu3+离子的逐渐加强的624 nm发射以及在长波侧不断延伸的电荷迁移带长激发尾。  相似文献   

12.
针对镁蒸气铁水脱硫的气液反应过程,利用物理模拟的方法,通过水模型实验对铁水脱硫气液反应过程进行实验研究.采用高速照相机来获取不同通气模式、通气流量和搅拌桨浸入深度下气泡的分布状态.用NaOH 与 CO2 的一级反应来模拟镁蒸气脱硫过程中的吸收速率和利用率.结果表明:使用中心底吹模式,通气流量为 2.0m3/h,搅拌桨浸入深度为 250mm 的条件时,熔池内的气泡细化分散效果很好.气液传质速率和 CO2 气泡利用率均有明显提高.  相似文献   

13.
在定-转子反应器中采用N2-水脱氧、CO2-水脱氧两个体系脱除水中的溶氧,考察了转子转速、液体体积流量以及气体体积流量对脱氧率和传质系数的影响,并对比了两个水脱氧体系的脱氧效果。实验结果表明:脱氧率随转子转速和气体体积流量的增加而升高,随液体体积流量的增加而降低;传质系数随着转子转速、液体体积流量、气体体积流量的增加而增加;此外,N2-水脱氧体系的脱氧效果要优于CO2-水脱氧体系。  相似文献   

14.
采用溶液法合成一个捕获二维无限水层的多酸杂化化合物3H3[PMo12O40]·6C3N6H6·31H2O.X射线单晶衍射表明:标题化合物属于三方晶系,空间群为P-3;其晶胞参数a=1.754 0(9)nm,b=1.754 0(9)nm,c=1.330 5(3)nm,α=90°,β=90°,γ=120°,V=3.545 3(4)nm3.该化合物中的Keggin型多酸阴离子作为模板诱导了水簇形成,搭构成一个二维水层{(H2O)30}n,三氨基三嗪填充孔洞后增强了水簇的稳定性. 热失重分析和循环伏安测试结果表明:标题化合物具有较好的热稳定性和优良的氧化还原性能.  相似文献   

15.
为了研究磨削碳纤维复合材料(CFRPs)时,纳米二硫化钼(MoS2)含量对纳米微量润滑效果的影响,制备了不同质量分数(0%,3%,6%,9%,12%)的纳米MoS2和棕榈油混合液,作为纳米微量润滑油液,对碳纤维复合材料进行磨削加工.使用光学显微镜,观测分析碳纤维复合材料的表面粗糙度、表面形貌.使用测力仪对磨削力进行测量,并通过磨削力计算出磨削力比.最后对纳米(MoS2)在纳米微量润滑磨削过程中的作用机理进行了阐述.结果表明,当纳米(MoS2)质量分数为9%时磨削力比最低,为0.0632,表面粗糙度Ra值最小,为1.86μm,且表面碳纤维损伤最小.  相似文献   

16.
采用共沉淀法制备20~40nm的Fe3O4颗粒。在Fe3O4悬浮液中分别利用柠檬酸钠单独作为还原剂、四羟甲基氯化磷(THPC)和抗坏血酸共同作为还原剂还原HAuCl4,生成10~90nm的Au纳米颗粒,形成Au/Fe3O4复合颗粒。通过透射电子显微镜和紫外分光光度计对Au/Fe3O4进行表征,研究还原剂种类对Au/Fe3O4粒径、形貌和分散性的影响,结果表明:柠檬酸钠为还原剂时,生成Au纳米颗粒的反应主要在Fe3O4纳米颗粒表面进行,Au纳米颗粒的负载量随柠檬酸钠用量增加而减少,粒径在28.08~77.71nm之间;THPC和抗坏血酸共同作为还原剂时,先在Fe3O4 纳米颗粒表面生成THPC-Au,加入抗坏血酸后生成Au纳米颗粒,粒径在71.44~153.2nm之间。  相似文献   

17.
微乳法制备的纳米Bi2[KG-*2]O3[KG-*4]对苯系物光催化活性   总被引:2,自引:2,他引:2  
采用微乳法制备了Bi2O3纳米粒子, 利用BET, XRD, XPS和UV-V IS等手段对其表征; 以挥发性有机物苯、 甲苯和对二甲苯为气相污染物, 测定了Bi2O3纳米微粒 对它们的光化学催化氧化活性. 结果表明: 采用微乳法合成的光催化剂粒子晶型主要为四方型(T), 粒子粒径为25.6~35.1 nm, 随着焙烧温度的升高晶型发生转变, 固体表面电子结合能增大, 光催化活性也相应提 高. 苯系物的降解速率顺序为: 对二甲苯>甲苯>苯.  相似文献   

18.
采用沉淀结合法,制备二氧化铅/石墨烯(β-PbO2/rGO)复合材料.通过X-射线粉末衍射仪(XRD)、场发射电子扫描显微镜(FESEM)、高分辨率透射电子显微镜(HRTEM)和比表面积分析仪研究该复合材料的结构、形貌和比表面积,利用电化学测试技术研究β-PbO2/rGO复合电极和纯β-PbO2电极的电化学性能.结果表明:在复合材料中,纳米β-PbO2较均匀地分散在rGO片表面,β-PbO2/rGO复合材料比纯β-PbO2具有更大的比表面积;复合电极因具有更多的反应活性位点,电化学反应速度较快;在不同的电流密度下,β-PbO2/rGO电极的质量比容量比纯β-PbO2电极高,证明复合电极具有比纯β-PbO2电极更好的电化学性能.  相似文献   

19.
 将再生竹纤维加入氟钛酸铵与硼酸的混合溶液中,经水热法合成,得到纤维素/TiO2复合材料。以紫外光为光源,研究纤维素/TiO2复合材料对甲基橙水溶液的催化降解性能。通过FT-IR、XRD、SEM等对纤维处理前后进行化学结构和微观形貌表征,结果表明:TiO2与纤维素形成的氢键等分子间作用力使TiO2被吸附到纤维素表面上,复合材料出现528 cm-1的O-Ti-O键的吸收峰。在紫外光照射60 min下,复合材料对甲基橙水溶液的光催化降解率为95.9%,与纯TiO2相当;复合材料可反复降解甲基橙水溶液5次。本实验合成的复合材料为污水处理提供了一种简单、低成本、环境友好的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号