首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 机器人软体材料分为软体驱动材料和软体感知材料,在仿生机器人中分别起到效应器与感受器的作用。故在制造仿生机器人时,软体材料的开发越发重要。本文概述了机器人软体材料与软体机器人概念上的差异,按照软体驱动材料和软体感知材料分别综述了机器人软体材料的发展动态,并探讨了这两类重要的机器人软体材料研发方面挑战及趋势。  相似文献   

2.
设计了一种多气囊仿生软体机器人,由位于上方的多个相互连通的气囊和位于下方的双层底座组成,通过给气囊充气以使软体机器人产生弯曲,通过在软体机器人前、后表面设置不同的摩擦片,机器人能够利用前、后摩擦力的不同而得以前行;利用ANSYS软件分析软体机器人充气、放气过程中的内应力,以改善机器人的结构设计;采用Yeoh模型研究软体机器人运动过程中的力学特性,在理想条件下推导出软体机器人的前行步幅与气囊内部气体压力的非线性关系模型,并通过仿生软体机器人的充气和前行运动实验验证仿生软体机器人前行运动的可行性.结果表明,当充气压力为90kPa时,机器人前进的步幅为19.25mm,与其理论值(22.85mm)基本一致.  相似文献   

3.
 随着水下作业要求的增加以及软体机器人技术的发展,水下软体机器人的研究成为水下机器人的一个前沿方向。用人工肌肉实现驱动控制并能实现仿生运动的水下软体机器人成为相关领域的研究热点。本文介绍现有水下软体机器人中7类人工肌肉驱动方式,再根据水下软体机器人推进形式,按5种仿生运动形式介绍了现有的水下软体机器人,最后展望了水下软体机器人未来在水下勘探的应用前景。  相似文献   

4.
软体机器人是由柔性材料加工而成的,可以任意改变自身尺寸,与刚性机器人相比具有高顺应性、适应性和安全性等特点,在工业、农业、医疗、救灾等领域都有广阔的应用前景,受到国内外学者的青睐。文中从制作材料、制作方法、驱动方式、应用领域、传感与控制方面对软体机器人进行综述,介绍了软体机器人的制作材料和柔性材料的新成果,以及近年来制作软体机器人较新的方法;按照驱动方式将软体机器人分为流体驱动、智能材料驱动、化学反应驱动,并对每种驱动方式的特点和典型结构进行了总结;对软体机器人的建模方法和控制策略进行归纳与分析,得出了开发刚柔并济的新材料、高效制造和精准控制是研究软体机器人的未来方向。  相似文献   

5.
软体机器人前沿技术及应用热点   总被引:1,自引:0,他引:1  
 随着材料学、化学、控制等学科的不断突破,人们对章鱼、蠕虫、海星等软体生物的观察及建模有了突破性进展,并衍生出一门新的机器人研究方向--软体机器人。本文通过回溯软体机器人的发展历程,介绍了近年来软体机器人在材料类型、驱动方式、应用领域等方面取得的进展以及面临的挑战,并结合中国国情展望了软体机器人未来发展的前景与方向。  相似文献   

6.
设计了一种基于膨胀-收缩运动规则的晶格型自重构模块化软体机器人.机器人由多个软体模块组成,每个软体模块由呈正六面体构型的硅胶主体和主从对接面组成.软体模块内部的凸起设计使其具有良好的膨胀性能,主从对接面是由与硅胶主体螺纹连接的铁盘、吸盘式电磁铁组成.基于软体模块体积变化与内部压强的关系式,对软体模块的充气膨胀进行分析,建立了充气气压与软体模块膨胀量之间的映射关系,获得相邻两软体模块连接所需的充气气压.每个软体模块在工作气压为30 kPa的情况下能够膨胀1.5倍,使用电磁铁连接及软体模块的膨胀-收缩运动规则实现相邻两软体模块的对接与分离,多个相邻软体模块的依次对接和分离可以实现模块化软体机器人的自重构.通过软体机器人自重构实验验证机器人自重构的可行性.  相似文献   

7.
软体机器人研究综述   总被引:3,自引:0,他引:3  
机器人技术广泛应用于工业生产、医疗服务、勘探勘测、生物工程、救灾救援等领域.传统机器人大都由刚性机构组成,存在环境适应能力低的缺点.软体机器人是一类新型仿生连续体机器人,可以任意改变自身形状,在非结构化环境中应用前景广阔.综述了软体机器人的仿生机理、驱动方式、建模与控制方法等关键问题,并通过分析和梳理软体机器人技术发展中的瓶颈问题及可行解决方案,探讨了软体机器人技术的发展趋势.  相似文献   

8.
<正>选择合适的驱动方式是软体机器人研究中的一项重要课题。因其材质与结构的特殊性,软体机器人对驱动方式的选择也有着更高的要求。流体驱动:利用气、液等流体,通过其变形结构使软体机器人内部腔体收缩、膨胀,达到受控变形和运动的目标。美国哈佛大学仿生机器人实验室研发的软体机器人Octobot是世界上首个全软体机器人,其基体由3D打印技术制造而成,采用气动驱动的方式,通过化学反应产生大量气体,借助压强变化实现爬、游泳等基本活动并与外界环  相似文献   

9.
尖端生长型软体机器人是一类新型的软体机器人,其制作简单、成本低,通过压力驱动主体外翻实现机器人的"生长",且具有运动过程中无环境阻力的独特优势,在诸多领域有着广阔的应用前景.目前,机器人的变刚度控制、大范围变形检测及精准控制是软体机器人存在的三个主要问题.围绕提出的软体机器人存在的三个主要问题,从机器人灵感来源、基本结...  相似文献   

10.
现有的沙土移动机器人大多采用刚性结构, 在复杂的工作环境中 常常会发生打滑、沉陷、翻倒等问题, 缺乏良好的环境适应能力. 针对该问题设计了一种面向沙土环境的仿弹涂鱼气动软体机器人; 基于地面力学理论和软体机器人建模方法, 考虑机器人在沙土环境下的约束条件, 通过对软肢体与沙土间力学交互特性的分析, 建立了软肢体/机器人-沙土交互力学模型, 并构建了输入气压与机器人运动特性的关联; 通过实验验证了软体机器人-沙土交互力学模型的有效性和准确性. 实验结果表明, 该软体机器人具有环境适应性强、控制简单、柔顺性高等优点.  相似文献   

11.
正软体机器人在实际的生产生活中具有极其广泛的应用。依据其使用场景常分为以下3种:人机交互康复机器人:将软体机器人与可穿戴设备结合可用以帮助特殊人群完成生理活动。哈佛大学研发的软体机器人手套利用软体致动器组成的模压弹性腔与纤维增强,诱导特定的弯曲,能够使肌肉或者神经受损的患者独立把握物体,有助于患者术后康复。勘探、野外运动:软体机器人利用自身柔软、弯曲程度高、自由度大等优势可以很好地适应不同的复杂环境,承担勘探、救援、侦查等工作。例如斯坦福大学研制的Vine-link robot可以举起100 kg的木箱,以各  相似文献   

12.
控制系统是机器人实现运动的关键.通过对所设计的由气动软体致动器驱动的仿青蛙游动软体机器人的机械结构和其仿生游动功能需求的分析,建立气动系统和电气系统,并通过Labview编写上位机软件,采用无线通讯的方式实现对仿青蛙游动软体机器人的远程调控以及数据采集,避免外接线束和管路对仿青蛙游动软体机器人运动的干扰,方便对仿青蛙游动软体机器人运动性能进行测试.经过实验验证,所设计的控制系统性能稳定、工作可靠,完全满足仿青蛙游动软体机器人的功能需求.  相似文献   

13.
 选择合适的驱动方式是软体机器人研究中的一项重要课题。因其材质与结构的特殊性,软体机器人对驱动方式的选择也有着更高的要求。  相似文献   

14.
可在6000米深海环境下工作的“水下机器手”由我国科学家首次研制成功。专家介绍,作为由中国科学院合肥智能机械研究所智能机器人传感器实验室承担的”863”项目,该系统不仅可用于深海作业型机器人,也可用于特种部队的排险机器人、空军无人驾驶飞机以及无人驾驶飞船中机器人自动或遥控驾驶和操作,还可辐射到其他相关领域,推广前景广阔。  相似文献   

15.
为了解决刚性机械手安全性低、适应性差的问题,设计一款具有抓取功能的软体机器人。该软体机器人由三个呈圆周 120°分布的软体驱动器和一个夹具组成,夹具可以实现自动化改变直径以适应不同大小物体的抓取,经测算软体机器人可以抓取直径范围为 45mm~97mm 的物体。夹具和软体驱动器都采用3D打印制造,具有成本低、制造简单、易于大规模生产的优点。软体机器人采用气压驱动,当给驱动器充气时,三手指同时弯曲抓取物体,具有很好的稳定性。对于软体驱动器建立了相应的力学模型,得到了弯曲角度与输入气压的关系,并利用ABAQUS 有限元仿真软件对驱动器弯曲特性进行仿真。对比发现,理论建模和仿真分析在驱动器弯曲角度具有很高的吻合性。  相似文献   

16.
《科技潮》2004,(1)
2003年11月24日《国家地理》杂志网站报道了一个让人振奋的消息:在美国加利福尼亚州北部海岸1600米深海处,研究人员发现有一处海洋生物繁衍的“海底托儿所”。在该深海海域,各种鱼类与章鱼密集于海底山脊,在漆黑的“海底托儿所”产卵、生儿育女。报道称,这是海洋生物学家首次直接观察到如此深海海域鱼类产卵孵化的场景,也是第一次发现两种不同海洋生物大量“群居”在同一地点繁衍后代。“海地托儿所”位于加州海岸吉尔达断岩带,距离加州海岸大约160公里,距海面大约1600米。在这个“海底托儿所”,章鱼与鱼类都群居于此处,共同“生儿育女”。…  相似文献   

17.
高效计算并整体分析软体尺蠖机器人的运动规律和行进步态是个具有挑战性的难题.在准静态条件下,建立了一个由刚性滑块和曲梁构成的简化力学模型,对该类机器人进行准静态的建模与仿真分析.首先基于欧拉-伯努利梁理论,给出了曲梁的总势能表达式.其次,利用变分原理,由总势能推导出控制方程,联立边界条件,建立了常微分方程组,并对其进行离散化以及无量纲化,给出了用于数值求解的非线性代数方程组.然后,根据曲梁和地面的接触情况以及系统的黏滞与滑移状况,将机器人的整个运动过程分为三个阶段,通过数值计算,得到在不同阶段下曲梁随初始曲率幅值变化的不同构型,描述出软体机器人在一个周期内的运动规律、步态变化和净位移量,解决了软体机器人在不同阶段的运动衔接问题.准静态方法的特点是计算效率较高,更加适用于对软体机器人的运动构型进行分析.  相似文献   

18.
设计了一种模块化软体机器人,其由多个可变形的球形模块单元组成,根据球形模块单元的膨胀和收缩,能改变自身的尺寸向前移动.应用有限弹性理论,分析了球形模块单元的充气膨胀过程,结果表明球形模块单元的初始膨胀半径越小,其最大压力越大.描述了3个球形模块单元依次膨胀和收缩过程,得出1个周期内该软体机器人的运动模式.最后, 通过3个球形模块软体机器人膨胀和收缩运动的实验,验证了模块化软体机器人运动模式的可行性.
  相似文献   

19.
哈佛大学的科学家近日研发了一款可变形的灵活机器人,它能通过紧密的关节空隙扭动,这是目前软体机器人领域最先进的机器人模型。这款软体机器人灵感来自鱿鱼和海星,这两者能够改变身体形状移动,能对地震灾难起到非常大的作用,可穿越狭小缝隙展开营救工作。  相似文献   

20.
软体机器人具有机构重构性、适应性及灵活性.基于气动系统的软体机器人具有质轻、功率密度比高、人机交互安全性高等优点,设计了一种由伸长型及收缩型气动肌肉组成的新型变刚度软体机器人手臂.根据该软体手臂的运动特性建立了运动学模型,利用MATLAB软件分析了手臂的工作空间.搭建控制实验测试平台,完成了手臂的轨迹运动控制实验,实验结果表明:跟踪阶跃信号上升时间小于2s,稳态平均误差为0.0028rad(0.16°),正弦信号跟随响应曲线平均误差为 0.0159rad(0.911°),手臂具有良好的可控性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号