首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
将微波相位检测技术与“束流能量极大化”方法相结合,设计了直线加速器微波相位检测与稳相调控系统,并进行了微波精密鉴相调相的实验研究.结果表明,在CW频率为2856MHz时,相位检测精度为2.0°,不仅能满足0.2GeV直线加速器作为0.8GeV电子储存环注入器的使用要求,而且可应用至其他多节加速段直线加速器微波系统.并从未来的直线加速器驱动的自由电子激光研究需求出发,成功地将微波相位检测精度提高到了优于0.3°的水平.  相似文献   

2.
我国两项核物理设备研究取得重要进展北京大学重离子RFQ加速调试出来北京大学技术物理系和重离子物理所的“重离子整体分离环型RFQ加速系统的研究”已取得重要进展。他们研制的26兆赫RFQ加速器已于今年4月初调试出束,成功地将N”离子加速到设计值300千电...  相似文献   

3.
一种冷却静电加速器磁铁线圈的方法──双回路循环冷却江忠友(原子核科学技术研究所)随着核技术研究的不断发展,要求加速器能提供多种带电离子束.我所的2.5MeV质子静电加速器因只能加速3种轻离子,不能满足实验需要,为了增加离子束种类,特别是适用于加速质量...  相似文献   

4.
利用LIF法诊断微波等离子体鞘层   总被引:4,自引:0,他引:4  
简要地阐明了利用激光诱导荧光法(LIF)诊断等离子体特性的原理,分别对二能级情况(共振荧光)与三能级情况(非共振荧光)采用饱和荧光法测量粒子浓度的公式进行了推导。在此基础上,提出了利用LIF法测量微波等离子体鞘层(特别是高压脉冲动态鞘层)的组分及其空间分布与能量分布的实验方法。  相似文献   

5.
针对北京大学超导加速器实验装置(PKU-SCAF)中两个9壳超导加速腔的冷却问题进行了研究.以抽真空与节流相结合为基础,给出了几种超流氦冷却循环方式;分析了这几种方式的流程机理和冷却特性.结果表明,采用带有低温换热器和低压换热器的冷却循环方式,整个超流氦冷却循环具有制冷效率高、系统功耗小等优点.给出了该冷却循环方式的低温冷却系统的温熵图.  相似文献   

6.
在等离子体源离子注入(PSII)技术中,被加工材料表明形状的弯曲使附近鞘层中电场结构出现聚焦效应,从而引起离子束流和离子注入剂量在材料表明上分布非常不均匀.在半圆容器表面情况下,这种情况尤为明显.利用MonteCarlo方法,考察了有共心附加零电位电极时半圆容器内底中央部位Ar^+注入能量和角度分布及真空室中气压参数的影响.通过在不同半径的鞘层边界上随机抽取与半径成正比的离子数量,计算了注入到内底表面的所有离子能量分布和角度分布.在模型中,通过考虑两种主要碰撞过程:电荷交换碰撞和弹性碰撞.对不同工作气压下的离子注入进行了考察.随着中性气体压力的增加,离子在穿越鞘层的过程中与中性粒子经历比较频繁的碰撞.这些碰撞一方面使离子失去能量,另一方面也使离子改变运动方向,导致注入的低能离子和不垂直于表面入射的离子增多.  相似文献   

7.
超短超强激光驱动等离子体,可获得电子能量高达1Ge V、质子能量高达60Me V的高性能粒子束,从而在高能加速器、聚变物理、短脉冲高亮度X光源产生、实现小型化自由电子激光等领域都有重大的应用价值。该研究主要研究利用超短超强激光在等离子体中形成稳定的特殊三维尾波结构,即空泡,实现单能电子加速。采用两种控制电子注入的方法,即两束激光对打和纳米细丝扰动,来提高电子加速的稳定性,并控制高能电子的数量和能量。该研究还将通过改变激光传输方向的等离子体密度,来改变空泡中纵向加速静电场的梯度,从而抵消高能电子束本身电荷分离场的梯度,以提高电子束的性能;还将研究高能电子束的细致结构,并考虑其可能的重大应用。该研究将利用靶后鞘层加速实现质子加速,并将利用多层靶来提高加速效率,利用微结构靶获得准单能质子束,同时研究获得高性能高能离子束的其他有效途径。  相似文献   

8.
射频超导(sRF)加速技术已广泛应用于基于加速器的大科学装置.在国际直线对撞机和其他相关项目的推动下,近年来国际上多个射频超导实验室开展了高梯度射频超导加速腔的研制.在不断改进精密加工、电磁场调平、表面处理和电子束焊接等工艺流程的基础上,北京大学近期研制成功一只高质量9-cell超导加速腔,其加速梯度为32.6MV/m,品质因数大于1.0×10^10,性能指标全面达到国际直线对撞机(ILC)的要求.这表明我国已经掌握了高水平超导加速腔的研制技术,为未来参加ILC国际合作以及建设其他采用射频超导加速技术的大科学装置打下了良好基础.  相似文献   

9.
建立了包括器壁发射二次电子的等离子体无碰撞鞘层的基本模型,讨论了一维稳态等离子体鞘层中二次电子发射对鞘层结构的影响.结果表明:器壁电势随着二次电子发射系数的增加而增加.在发射系数小于临界发射系数时,鞘层电势随发射系数增加而增加,鞘层是离子鞘;在发射系数大于临界系数时,电场出现反转,电势在鞘层空间出现一最小值,鞘层不再是离子鞘.并且就稳态等离子体推进器器壁材料不同,简要分析了二次电子发射给其鞘层带来的影响.  相似文献   

10.
随着微处理器设计技术的发展,基于硬件仿真加速器的系统验证已成为业内公认的最有效的系统验证方法,而系统仿真频率是硬件仿真加速器验证系统最重要的性能指标之一.本文以某款国产高性能通用微处理器FT-xx在ASIC仿真加速平台上的系统仿真加速为工程背景,通过调整编译选项、分析编译结果展开研究.首先分析了ASIC硬件仿真加速的加速原理,然后重点研究了逻辑资源数量、通用寄存器类型设计映射方式、特殊寄存器类型设计映射方式对系统仿真频率的影响.研究结果表明,当待验证设计的规模一定时,ASIC仿真器的逻辑资源并非越多越好、memorysize值的选取存在一个较佳范围、对于某些特殊的寄存器采用强制映射能极大地提高系统仿真频率.  相似文献   

11.
Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m(-1) (refs 1-3). These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators as compact next-generation sources of energetic electrons and radiation. To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread, which limits potential applications. Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 10(9) electrons above 80 MeV). Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance. The results open the way for compact and tunable high-brightness sources of electrons and radiation.  相似文献   

12.
对脉冲激光沉积过程中激光和金属作用的微观机制进行了深入分析.通过双温方程模拟得到飞秒激光作用金靶材温度随时间变化的图像.该图像反应出激光和金属表面及内部晶格作用特点.进一步分析得知,当晶格温度大于金属沸点时将会产生高能的等离子体.通过数值模拟找出了产生等离子体所需激光的能量阈值,这样能够帮助纳米材料的制备者选择激光,制备出优质的纳米薄膜.  相似文献   

13.
根据控制束晕-混沌的非线性策略,提出一种负指数函数控制器,并运用该控制器和多粒子(PIC)模拟程序研究初始分布为Kapchinsky—vladimirsky(K—V)分布的强流离子束在加速器通道中的传输过程。结果表明,使用该控制器能够消除束晕-混沌及其再生现象,达到对束晕-混沌的有效控制,而且将真空相移的取值范围从90°拓宽到161°。  相似文献   

14.
生物光子与藏药七十味珍珠丸的药理机制   总被引:1,自引:0,他引:1  
采用高度敏感的生物光子检测(成像)系统(主要由电子倍增CCD和体视显微镜组成),研究了藏药七十味珍珠丸(RNSP)灌胃处理对健康成年雌性昆明小鼠脑片、肝和肾组织的生物光子活动调控的影响.实验结果表明:脑片、肝和肾均具有自发光现象(生物光子).在光刺激下,脑片、肝和肾具有不同程度的诱发光现象.RNSP处理后的脑组织诱发光的最大值高于对照组,并且衰减较慢.研究结果提示RNSP可能通过影响效应组织如脑组织的生物光子的活动来发挥其药理作用.其作用机制可能是通过影响生物光子信号传递对组织细胞功能产生调节作用,确切的作用机制值得进一步研究.  相似文献   

15.
激光清洗技术的初步研究和应用   总被引:2,自引:0,他引:2  
激光清洗技术与其他清洗方法(化学清洗、超声波清洗等)相比,具有保证清洗对象无损、清洗效果好、精细、无污染等优点,正在被广泛的研究和应用.根据去除原理的不同,激光清洗技术被分类为干式激光清洗、湿式激光清洗和激光等离子体冲击波等方法.本文介绍了本单位项目组对激光清洗技术的初步研究和应用.  相似文献   

16.
采用液相激光烧蚀法制备了二氧化钛纳米颗粒,研究了二氧化钛纳米颗粒的生长与微结构.XRD、TEM、XPS等表征表明:此方法可在室温条件下一步获得金红石型二氧化钛纳米颗粒胶体,颗粒直径约50nm,尺寸分布窄,分散性好,从而显示出良好的应用前景.结合微观表征与激光诱导的瞬态等离子体分析对TiO2纳米颗粒形成机理进行了探讨.  相似文献   

17.
研究了波长为810 nm、脉宽为0.81 ps的圆偏振激光脉冲与毫米量级的一维均匀等离子体相互作用中受激拉曼散射不稳定性;利用一维粒子模拟程序分析了激光沿着靶传播过程中在不同位置的受激拉曼散射,以及激光强度和等离子体密度对受激拉曼散射不稳定性的影响;发现激光强度增强和等离子体密度的增加(1/4临界密度内)均能够促进受激拉曼散射的发展.研究结果可为点火试验的设计提供参考.  相似文献   

18.
超短超强激光与等离子体相互作用中得到的高能质子在质子成像、粒子加速、诊断超短超强激光与等离子体相互作用的物理过程、“快点火”和治疗癌症等方面有一定的应用。使得对超短超强激光与等离子体相互作用得到的高能质子的研究成为目前的研究热点。文章综述了产生质子的两种主要加速机制以及在不同实验条件下超短超强激光与等离子体相互作用过程中得到质子的能量、角分布、产额以及相关的原理。  相似文献   

19.
电子温度是表征激光等离子体特性的主要特征参数,对等离子体电子温度的诊断可进一步深入理解等离子体内部的反应机制及其变化过程.激光诱导击穿光谱技术(LIBS)作为一种新型的等离子体诊断技术,可应用于等离子体各种性质的研究和参数的诊断.大气压环境下产生的等离子体一般被看作处于局域热平衡状态,可以用玻尔兹曼或萨哈玻尔兹曼法确定电子温度.笔者介绍了玻尔兹曼和萨哈玻尔兹曼确定电子温度的两种方法,通过对实验得到的Ti等离子体发射光谱分析,发现两种方法得到的电子温度往往存在差异,且在玻尔兹曼法中利用中性原子和离子得到的电子温度也往往不同,在文章中对这些差异进行了解释.  相似文献   

20.
超高速微小碎片激光测速系统研制及应用   总被引:1,自引:0,他引:1  
地面超高速模拟实验是研究微小空间碎片撞击效应经济有效的手段,其中等离子体加速器为微米量级碎片的主要地面模拟设备.本文研制了在等离子体驱动微小碎片加速器系统并应用于高速飞行微粒速度测量的激光测速系统.该激光测速系统工作原理是.利用主动激光照明,在颗粒飞行路径上形成光墙,通过检测颗粒通过光墙形成的散射激光,得到微粒到达光墙的时间,利用飞行时间法进行高速微粒速度测量.在激光测速系统原理测试实验中,采用信号响应上升时间小于10 ns,电子渡越时间小于20ns的高灵敏、快响应的光电倍增管,原理试验测得该探测系统的响应时间仅为约70 ns.该响应时间小于速度为15 km/s的颗粒通过3~5mm厚度的片状激光束的理论时间,并验证了该系统灵敏度高、响应时间快的特点,可以满足超高速微粒(8~20 km/s)通过3~5 mm激光墙的时间阈值(约0.1 μs)的需求.目前,激光测速系统已经应用于等离子体加速器发射超高速微粒的试验中,能有效测量等离子体加速器所发射的高速微粒的群速度,对15 km/s及以上速度的超高速颗粒亦能捕捉到有效信号,实现对微粒速度的测量,达到了良好的预期效果.在等离子体微小碎片加速器上开展的超高速撞击试验中,激光测速系统能够实现无损在线速度测量,对等离子体加速器上开展的超高速撞击试验提供了重要帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号