首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
闫德明 《山西科技》2012,(1):81-82,85
在机械加工中,有很多因素影响工件表面质量,如何使工件的表面质量达到要求,减小各因素对工件表面质量的影响,就成为加工前必须考虑的问题。通过对影响机械加工表面质量的因素进行分析,并提出提高工件表面质量的措施。  相似文献   

2.
电化学机械光整加工表面相关性分析   总被引:1,自引:0,他引:1  
应用随机过程的相关性在自相关、互相关两方面对精磨加工表面和电化学机械光整加工表面进行了研究,分析了光整加工对工件表面的影响,结果表明电化学机械光整加工提高了工件的表面质量,降低了工件的表面粗糙度.  相似文献   

3.
为研究钛合金TC4的加工特性,采用短电弧加工系统对钛合金TC4进行加工试验,确定短电弧加工参数对钛合金材料去除速率与加工表面质量的影响,在相同的加工条件下与不锈钢PH17-4试件进行了对比。采用正交试验确定影响加工表面质量的主次因素和最佳电加工参数,同时对电弧加工后的钛合金材料表面层进行了检测及分析。结果表明:短电弧加工钛合金TC4时,当放电间隙减小和电源电压增大时,金属材料的去除速率增大,加工效率提高,但工件的表面质量降低;当工件转速提高时,工件表面粗糙度值变化不明显,但材料去除速率增大;相同的加工条件下,其去除速率与表面质量均略低于不锈钢。影响钛合金TC4加工表面粗糙度的因素主次顺序为电源电压>放电间隙>主轴转速,最优加工方案为放电间隙0.3 mm,主轴转速118 r/min,电源电压10 V。加工后的钛合金材料表面层的机械性能及金相组织基本稳定,过热层厚度及硬度变化不明显,对后续的精加工不会造成困难,这为短电弧加工技术在钛合金材料加工方面的应用提供了一定的理论依据。  相似文献   

4.
电火花线切割是一种非接触式特种加工技术,在生产中广泛应用.本文对航空航天中常见材料钛合金(TC4)进行研究,对电火花线切割加工中的主要电参数(电流、脉冲宽度、占空比)对工件的加工效率及表面质量的影响进行实验,研究表明:工件表面粗糙度与加工的电流成正比,适当增加脉冲宽度、占空比参数可明显提高加工效率和工件表面质量.  相似文献   

5.
分析超精密磨削加工中砂轮微小振动对工件表面质量的影响,建立磨削中振动引起工件表面轮廓误差的数学模型,设计相应的超精密磨削加工微振动试验系统,用以模拟磨削过程中砂轮径向、横向的微小振动和摆动.结果表明:合理选择砂轮振动频率或工件主轴转速能有效提高工件表面精度,降低表面波纹度.  相似文献   

6.
侯建红 《科技信息》2009,(17):59-59
机械零件的表面加工质量包括表面粗糙度、加工硬化和残余应力三个方面,表面质量的好坏对零件在使用中的可靠性和耐久性有着很大的影响。通过对影响因素的分析,总结出机械加工中各种工艺因素对加工表面质量影响的规律,找出提高零件表面质量的有效途径。  相似文献   

7.
粗糙度是衡量工件表面质量的重要指标,其一方面直接决定了产品的外观精美程度,另一方面也影响着机器装配的质量及零件使用寿命。该文通过对表面粗糙度影响因素的深入分析,旨在找出有效降低表面粗糙度值而提高零件表面质量的有效途径。  相似文献   

8.
张涛 《佳木斯大学学报》2021,39(2):88-90,123
针对电火花成型加工机床工艺参数难以确定以及工件表面质量差的问题,在CTM450机床上探究了脉冲电流、脉冲宽度、脉冲间隔对成型加工中MPR和Ra的影响,在正方实验的基础上,以提高材料去除率和工件表面质量为优化目标,设计了混合粒子群算法,将仿真优化后的结果与实际加工效果进行验证,表面该算法准确有效.  相似文献   

9.
影响车削加工工件表面质量的因素很多,如何判断影响程度对控制车削生产来说是非常重要的.本文使用了响应面法建立工艺参数与表面粗糙度之间的关系,通过实验给出了数学表达式,具有很强的实用性.  相似文献   

10.
短电弧铣削加工技术属于特种加工行业中电加工的技术范畴,尤其适用于特硬、超强、高韧性等难加工材料的高效加工。但工件加工表面的技术特性(表面变质层、硬度、残余应力、表面层缺陷等)还有待于深入研究。为获得短电弧铣削加工良好的工艺效果,引入传统BP算法和Levenberg-Marquardt(简称L-M)算法,构建短电弧铣削加工表面质量模型。通过分析表面质量的影响因素,选取放电电压、频率、气压、脉冲时间为模型的输入,表面粗糙度、变质层厚度、工件材料去除率为输出,比较两种模型的预测精度。结果表明,基于L-M算法的BP神经网络对表面粗糙度、变质层厚度、材料去除率的平均预测误差分别为2.9%、9.4%、4.6%,低于传统的BP神经网络。相比传统的BP神经网络,改进的LM-BP神经网络模型提高了预测精度,实际工程中可用于优化工艺参数。  相似文献   

11.
磁性研磨的加工特性   总被引:2,自引:0,他引:2  
磁性研磨是一种利用磁场中的磁性磨料对具有相对运动的工件表面进行光整加工的新技术,具有表面质量好、适应性能广泛的优点。  相似文献   

12.
机械加工时所产生的切削热,使得工件发生热变形,从而影响工件的表面质量和尺寸精度。热变形的大小与加工方式、零件形状、材料以及应力等多种因素有关。文章主要通过对简单形体(半径为r0、长度为L的实心长轴)非均匀温度场、表面残余应力以及由此产生的热变形进行研究,了解非均匀温度场的热变形规律,并通过举例计算和实验分析,应用于磨削加工中,有利于提高磨削加工的效率和加工精度,这对于精密加工有着重要的意义。  相似文献   

13.
葛大华 《科技信息》2010,(15):102-102
电火花线切割机按切割速度可分为高速走丝和低速走丝两种,低速走丝线切割机所加工的工件表面粗糙度和加工精度比高速走丝线切割机稍好,但低速走丝线切割机床的机床成本和使用成本都比较高,而我国独创的高速走丝线切割机床它结构简单,机床成本和使用成本低,易加工大厚度工件,近40年发展,已成为我国产量最大,应用最广泛的机床种类之一,在模具制造、新产品试制和零件加工中得到了广泛应用。本文在教学和生产实践中对影响线切割加工工件表面质量的相关因素等方面做了一些探索和研究,介绍了快走丝线切割加工质量的评价体系,分析了影响快走丝线切割加工质量的因素,并提出了几种解决措施。  相似文献   

14.
王晶 《科技资讯》2011,(36):68-68
从影响数控电火花线切割加工表面质量的工艺方法上进行分析研究,提出了改善工件表面质量的相应措施与方法。  相似文献   

15.
功率谱密度法(Power Spectral Density,PSD)从物理意义上来讲就是单位频率内的信号能量,用于描述随机过程的功率与频率之间的关系。PSD法可以用于分析超精密加工表面的形貌特征,也可以分析不同频率在表面形貌中的分布,从而评价加工工艺对超精密加工表面质量的影响。利用一维PSD的方法,评价了磨削硅片、抛光硅片、抛光铜片表面的质量,通过结果分析可知,与表面粗糙度方法相比,PSD方法可以更全面地评价被加工工件的表面质量。因此,需要在实验室教学过程中引导学生关注功率谱密度分析方法,建立功率谱密度函数与超精密加工表面质量之间的关系。  相似文献   

16.
邹锡雄 《科技资讯》2013,(8):123-124
本文对车削加工过程中影响工件加工质量的多种因素和常见问题进行探讨,分析车削工艺如何减少各种因素对加工精度的影响,对影响车削加工精度的因素进行误差分析使工件的加工达到质量要求。  相似文献   

17.
由于中小模数内齿轮结构所限,其齿面淬硬后的齿形加工难以使用传统的磨齿工艺,因此提出了一种电火花成型铣削加工方法,由于电极旋转放电,电极放电面积大,加工精度受电极损耗影响小,且电电腐蚀产物更好的排出。根据加工原理与方法设计了加工装置,通过单因素试验研究了基本工艺规律。根据单因素实验结果选取有代表性的水平设计正交实验,通过正交实验结合表面粗糙度和加工效率研究了最优加工条件。设计对比试验,实验结果表明比较与传统电火花成型加工方法,工件表面质量与加工效率都有显著提高。  相似文献   

18.
表面粗糙度是一项衡量工件表面质量的重要技术指标,高速车削过程中,随着被切削材料硬度和切削速度的提高,工件已加工表面质量在一定程度上得到了改善。工件表面形貌、切削用量、熔融金属涂抹现象决定着已加工表面粗糙度值的变化。  相似文献   

19.
随着现代化工业生产的不断发展,对产品的质量提出了越来越高的要求。这就对零件表面的物理和几何性能提出了非常苛刻的要求。研究机械加工表面质量的目的就是为了掌握机械加工中各种工艺因素对加工表面质量影响的規律,以便运用这些规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的。该文根据切削过程工件表面质量影响因素,设计了合理的实验方案,研究了切削参数与表面质量之间的关系,采用线性回归分析方法,建立切削参数和表面粗梃度的关系模型。  相似文献   

20.
影响机械加工表面质量的因素分析   总被引:4,自引:0,他引:4  
寇元哲 《甘肃科技》2007,23(7):98-100
加工表面产生的表面微观几何形状误差和表面物理力学性能的变化,对机器零件的使用性能有严重的影响。本文主要以影响加工表面粗糙度和加工表面物理力学性能变化的因素进行分析研究,目的就是为了掌握机械加工中各种工艺因素对加工表面质量影响的规律,以便运用这些规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号