首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
V T Nguyen  T Kiss  A A Michels  O Bensaude 《Nature》2001,414(6861):322-325
  相似文献   

3.
Hansen SB  Tao X  MacKinnon R 《Nature》2011,477(7365):495-498
The regulation of ion channel activity by specific lipid molecules is widely recognized as an integral component of electrical signalling in cells. In particular, phosphatidylinositol 4,5-bisphosphate (PIP(2)), a minor yet dynamic phospholipid component of cell membranes, is known to regulate many different ion channels. PIP(2) is the primary agonist for classical inward rectifier (Kir2) channels, through which this lipid can regulate a cell's resting membrane potential. However, the molecular mechanism by which PIP(2) exerts its action is unknown. Here we present the X-ray crystal structure of a Kir2.2 channel in complex with a short-chain (dioctanoyl) derivative of PIP(2). We found that PIP(2) binds at an interface between the transmembrane domain (TMD) and the cytoplasmic domain (CTD). The PIP(2)-binding site consists of a conserved non-specific phospholipid-binding region in the TMD and a specific phosphatidylinositol-binding region in the CTD. On PIP(2) binding, a flexible expansion linker contracts to a compact helical structure, the CTD translates 6 ? and becomes tethered to the TMD and the inner helix gate begins to open. In contrast, the small anionic lipid dioctanoyl glycerol pyrophosphatidic acid (PPA) also binds to the non-specific TMD region, but not to the specific phosphatidylinositol region, and thus fails to engage the CTD or open the channel. Our results show how PIP(2) can control the resting membrane potential through a specific ion-channel-receptor-ligand interaction that brings about a large conformational change, analogous to neurotransmitter activation of ion channels at synapses.  相似文献   

4.
5.
6.
T Fujimura  J C Ribas  A M Makhov  R B Wickner 《Nature》1992,359(6397):746-749
Double-stranded RNA viruses have an RNA-dependent RNA polymerase activity associated with the viral particles which is indispensable for their replication cycle. Using the yeast L-A double-stranded RNA virus we have investigated the mechanism by which the virus encapsidates its genomic RNA and RNA polymerase. The L-A gag gene encodes the principal viral coat protein and the overlapping pol gene is expressed as a gag-pol fusion protein which is formed by a -1 ribosomal frameshift. Here we show that Gag alone is sufficient for virus particle formation, but that it fails to package the viral single-stranded RNA genome. Encapsidation of the viral RNA requires only a part of the Pol region (the N-terminal quarter), which is presumably distinct from the RNA polymerase domain. Given that the Pol region has single-stranded RNA-binding activity, these results are consistent with our L-A virus encapsidation model: the Pol region of the fusion protein binds specifically to the viral genome (+) strand, and the N-terminal gag-encoded region primes polymerization of Gag to form the capsid, thus ensuring the packaging of both the viral genome and the RNA polymerase.  相似文献   

7.
C Scafe  D Chao  J Lopes  J P Hirsch  S Henry  R A Young 《Nature》1990,347(6292):491-494
The large subunit of RNA polymerase II contains a highly conserved and essential heptapeptide repeat (Pro-Thr-Ser-Pro-Ser-Tyr-Ser) at its carboxy terminus. Saccharomyces cerevisiae cells are inviable if their RNA polymerase II large subunit genes encode fewer than 10 complete heptapeptide repeats; if they encode 10 to 12 complete repeats cells are temperature-sensitive and cold-sensitive, but 13 or more complete repeats will allow wild-type growth at all temperatures. Cells containing C-terminal domains (CTDs) of 10 to 12 complete repeats are also inositol auxotrophs. The phenotypes associated with these CTD mutations are not a consequence of an instability of the large subunit; rather, they seem to reflect a functional deficiency of the mutant enzyme. We show here that partial deletion mutations in RNA polymerase II CTD affect the ability of the enzyme to respond to signals from upstream activating sequences in a subset of promoters in yeast. The number of heptapeptide repeats required for maximal response to signals from these sequences differs from one upstream activating sequence to another. One of the upstream elements that is sensitive to truncations of the CTD is the 17-base-pair site bound by the GAL4 transactivating factor.  相似文献   

8.
TFIIH is negatively regulated by cdk8-containing mediator complexes   总被引:8,自引:0,他引:8  
Akoulitchev S  Chuikov S  Reinberg D 《Nature》2000,407(6800):102-106
  相似文献   

9.
The cargo-binding domain regulates structure and activity of myosin 5   总被引:1,自引:0,他引:1  
Myosin 5 is a two-headed motor protein that moves cargoes along actin filaments. Its tail ends in paired globular tail domains (GTDs) thought to bind cargo. At nanomolar calcium levels, actin-activated ATPase is low and the molecule is folded. Micromolar calcium concentrations activate ATPase and the molecule unfolds. Here we describe the structure of folded myosin and the GTD's role in regulating activity. Electron microscopy shows that the two heads lie either side of the tail, contacting the GTDs at a lobe of the motor domain (approximately Pro 117-Pro 137) that contains conserved acidic side chains, suggesting ionic interactions between motor domain and GTD. Myosin 5 heavy meromyosin, a constitutively active fragment lacking the GTDs, is inhibited and folded by a dimeric GST-GTD fusion protein. Motility assays reveal that at nanomolar calcium levels heavy meromyosin moves robustly on actin filaments whereas few myosins bind or move. These results combine to show that with no cargo, the GTDs bind in an intramolecular manner to the motor domains, producing an inhibited and compact structure that binds weakly to actin and allows the molecule to recycle towards new cargoes.  相似文献   

10.
11.
Architecture of the Mediator head module   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
Structure and conserved RNA binding of the PAZ domain   总被引:1,自引:0,他引:1  
Yan KS  Yan S  Farooq A  Han A  Zeng L  Zhou MM 《Nature》2003,426(6965):468-474
The discovery of RNA-mediated gene-silencing pathways, including RNA interference, highlights a fundamental role of short RNAs in eukaryotic gene regulation and antiviral defence. Members of the Dicer and Argonaute protein families are essential components of these RNA-silencing pathways. Notably, these two families possess an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain whose biochemical function is unknown. Here we report the nuclear magnetic resonance solution structure of the PAZ domain from Drosophila melanogaster Argonaute 1 (Ago1). The structure consists of a left-handed, six-stranded beta-barrel capped at one end by two alpha-helices and wrapped on one side by a distinctive appendage, which comprises a long beta-hairpin and a short alpha-helix. Using structural and biochemical analyses, we demonstrate that the PAZ domain binds a 5-nucleotide RNA with 1:1 stoichiometry. We map the RNA-binding surface to the open face of the beta-barrel, which contains amino acids conserved within the PAZ domain family, and we define the 5'-to-3' orientation of single-stranded RNA bound within that site. Furthermore, we show that PAZ domains from different human Argonaute proteins also bind RNA, establishing a conserved function for this domain.  相似文献   

14.
Park YC  Burkitt V  Villa AR  Tong L  Wu H 《Nature》1999,398(6727):533-538
Tumour necrosis factor (TNF)-receptor-associated factors (TRAFs) form a family of cytoplasmic adapter proteins that mediate signal transduction from many members of the TNF-receptor superfamily and the interleukin-1 receptor. They are important in the regulation of cell survival and cell death. The carboxy-terminal region of TRAFs (the TRAF domain) is required for self-association and interaction with receptors. The domain contains a predicted coiled-coil region that is followed by a highly conserved TRAF-C domain. Here we report the crystal structure of the TRAF domain of human TRAF2, both alone and in complex with a peptide from TNF receptor-2 (TNF-R2). The structures reveal a trimeric self-association of the TRAF domain, which we confirm by studies in solution. The TRAF-C domain forms a new, eight-stranded antiparallel beta-sandwich structure. The TNF-R2 peptide binds to a conserved shallow surface depression on one TRAF-C domain and does not contact the other protomers of the trimer. The nature of the interaction indicates that an SXXE motif may be a TRAF2-binding consensus sequence. The trimeric structure of the TRAF domain provides an avidity-based explanation for the dependence of TRAF recruitment on the oligomerization of the receptors by their trimeric extracellular ligands.  相似文献   

15.
16.
K Nagai  C Oubridge  T H Jessen  J Li  P R Evans 《Nature》1990,348(6301):515-520
The crystal structure of the RNA binding domain of the U1 small nuclear ribonucleoprotein A, which forms part of the ribonucleoprotein complex involved in the excision of introns, has been solved. It contains a four-stranded beta sheet and two alpha helices. The highly conserved segments designated RNP1 and RNP2 lie side by side on the middle two beta strands. U1 RNA binding studies of mutant proteins suggest that the RNA binds to the four-stranded beta sheet and to the flexible loops on one end.  相似文献   

17.
18.
19.
RNA degradation is a determining factor in the control of gene expression. The maturation, turnover and quality control of RNA is performed by many different classes of ribonucleases. Ribonuclease II (RNase II) is a major exoribonuclease that intervenes in all of these fundamental processes; it can act independently or as a component of the exosome, an essential RNA-degrading multiprotein complex. RNase II-like enzymes are found in all three kingdoms of life, but there are no structural data for any of the proteins of this family. Here we report the X-ray crystallographic structures of both the ligand-free (at 2.44 A resolution) and RNA-bound (at 2.74 A resolution) forms of Escherichia coli RNase II. In contrast to sequence predictions, the structures show that RNase II is organized into four domains: two cold-shock domains, one RNB catalytic domain, which has an unprecedented alphabeta-fold, and one S1 domain. The enzyme establishes contacts with RNA in two distinct regions, the 'anchor' and the 'catalytic' regions, which act synergistically to provide catalysis. The active site is buried within the RNB catalytic domain, in a pocket formed by four conserved sequence motifs. The structure shows that the catalytic pocket is only accessible to single-stranded RNA, and explains the specificity for RNA versus DNA cleavage. It also explains the dynamic mechanism of RNA degradation by providing the structural basis for RNA translocation and enzyme processivity. We propose a reaction mechanism for exonucleolytic RNA degradation involving key conserved residues. Our three-dimensional model corroborates all existing biochemical data for RNase II, and elucidates the general basis for RNA degradation. Moreover, it reveals important structural features that can be extrapolated to other members of this family.  相似文献   

20.
Crystal structure of a Src-homology 3 (SH3) domain.   总被引:28,自引:0,他引:28  
A Musacchio  M Noble  R Pauptit  R Wierenga  M Saraste 《Nature》1992,359(6398):851-855
The Src-homologous SH3 domain is a small domain present in a large number of proteins that are involved in signal transduction, such as the Src protein tyrosine kinase, or in membrane-cytoskeleton interactions, but the function of SH3 is still unknown (reviewed in refs 1-3). Here we report the three-dimensional structure at 1.8 A resolution of the SH3 domain of the cytoskeletal protein spectrin expressed in Escherichia coli. The domain is a compact beta-barrel made of five antiparallel beta-strands. The amino acids that are conserved in the SH3 sequences are located close to each other on one side of the molecule. This surface is rich in aromatic and carboxylic amino acids, and is distal to the region of the molecule where the N and C termini reside and where SH3 inserts into the alpha-spectrin chain. We suggest that a protein ligand binds to this conserved surface of SH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号