首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于管壁取样的气液两相流量测量   总被引:3,自引:0,他引:3  
为克服传统取样式多相流量测量方法取样口易堵塞的缺点,提出了通过管壁取样测量气液两相流体流量的新方法.管壁四周均匀布置4个直径为2.5 mm的取样孔,并在上游采用旋流叶片将来流整改成液膜厚度均匀分布的环状流型,从而增强了取样的代表性.分析表明,取样流体中的液相质量流量与主流体液相质量流量的比值主要取决于取样孔的数目和大小,而取样流体中的气相质量流量与主流体气相质量流量的比值则与主管路液相流量有关.在管径为0.04 m的气液两相流实验回路进行的实验表明,在实验范围内液相取样比为0.049,基本不受主管气液相流量波动的影响,能够在宽广的流动范围内维持恒定.液相流量最大测量误差为6.8%,气相流量最大测量误差为8.9%.  相似文献   

2.
提出一种具有4个分流喷嘴的新型取样器结构,根据分流比和取样流体气、液流量确定主管路气液相流量。为保证取样流体的代表性,采用"流型调整"与"阻力控制"两种方法抑制相分离的发生。建立气液两相流数值模型,模拟气液两相流在取样器中的流动特性。在气液两相流试验环道上开展试验测试,流型包括波浪流、段塞流及环状流。结果表明:在试验范围内气、液相分流系数接近理论值0.25,其主要取决于分流喷嘴的数目,不受流型、气液流速等参数波动的影响,流量测量误差小于±6.0%。该取样计量装置具有体积小、精度高、维护费用低的优点,可代替传统计量分离器,实现气液流量的实时测量。  相似文献   

3.
多相流体通过管壁破口会发生相分离,导致泄漏流体的气液相比例与主管出现差异。为预测水平管环状流泄漏相分离特性,综合考虑了周向液膜分布不均匀影响,建立了不同方位破口相分离特性预测模型。在气液两相流实验环道上进行了泄漏特性实验研究,测量了环状流型下与管底部周向夹角分别为0°、45°、90°的破口泄漏的相分离特性,实验段直径为40mm,破口为圆孔直径2. 5 mm。结果表明,泄漏的气、液相流量与相应的主管气液相流量的比值主要由自破口处的气液相分布决定。在实验范围内模型预测结果与实验值吻合良好。  相似文献   

4.
基于密度测试计算原理,采用油、气、水不分离计量技术,利用计量气液多相混合流体流量和混合流体组分的方法设计了一种气液两相流流量计,实现了油、气、水混合流体流量的分别计量.  相似文献   

5.
基于密度测试计算原理, 采用油、 气、 水不分离计量技术, 利用计量气液多相混合流体流量和混合流体组分的方法设计了一种气液两相流流量计, 实现了油、 气、 水混合流体流量的分别计量.  相似文献   

6.
水平管气液环状流在新型分配器中的分配研究   总被引:2,自引:1,他引:2  
设计了一种新型三通型两相分配器,该分配器主管侧壁均匀分布着直径均为3.5mm的8个小孔,主管中的气液混合物通过安装在主管外壁上的环室进入侧支管.通过在空气一水实验台上对水平管气液环状两相流通过该分配器进行的实验研究发现:与传统三通分配器的分配特性不同,该分配器的液相会优先进入侧支管.建立了相分配模型,认为对于环状流,通过管壁小孔的液膜将被小孔捕获,从而进入侧支管.该模型还提出了分配影响区修正系数,实验发现该系数与入口干度成线性关系.预测的气液相分流系数、主管出口与直通管间压力损失与实验结果吻合得很好,最大误差为7.24%.  相似文献   

7.
转鼓分流分相式气液两相流体流量测量技术研究   总被引:6,自引:0,他引:6  
提出了一种分流分相式气流两相流体流量计,其采用转鼓作为分配器,从被测的两相流体中成比例地分流出约20%的气流混合物,并应用分离法分别测量出其中的气相和液相流量,然后根据比例关系确定被测两相流体的各相总流量,理论分析和实验结果都证明,分流系数等于分流通道数与总通道数的比值,而与流型无关,实验中出现的流型包括分层流,波状分层流和环状流,在实验范围内,流量测量的平均误差小于5%,实验结果与表明,转鼓运动间隙是影响实际分流系数稳定性的主要因素,转鼓的加工精度愈低,运动间隙过大,则分流系数的稳定性和测量精度就愈低。  相似文献   

8.
针对小通道气液两相流段塞流,将常规通道的压力-体积-温度测量法(PVT法)应用于两相流流量测量研究。利用光电传感器、温度传感器以及差压传感器采集上、下游位置的气液两相流流速信号、温度信号和压力信号,然后根据PVT法测量原理实现气液两相流流量测量。实验中采用的小通道内径为5.0 mm。研究结果表明:本文提出的将PVT法应用于小通道气液两相流段塞流流量测量的方法是可行的,两相流互相关流速测量最大相对误差在6%以内,两相流液相流量测量最大相对误差在10%以内。  相似文献   

9.
管内相分隔技术是一种先进的多相流处理技术,为多相流分离和测量提供了新的思路。但是目前对多相流管内相分隔特性及流动机理的研究较少,一定程度上限制了该技术的应用。利用数值模拟的方法,对高气液比气液两相流管内相分隔特性进行了研究,并通过实验方法加以验证。高气液比气液两相流在旋流器的作用下被调整为气核-液环流型,即形成管内相分隔状态。研究结果表明,旋流器叶片角度为45°时相分隔效果最好;在气液两相流管内相分隔状态下,液环维持距离约为160 mm;气液两相进口流速和液相粒径对相分隔效果有较大影响,当进口速度大于5 m/s,液相粒径大于0.05 mm时,能够取得较好的相分隔效果。研究结论为基于管内相分隔技术的高气液比气液两相流分离和测量提供了理论支持。  相似文献   

10.
分流比是取样型多相计量装置的关键参数,传统取样装置取样比固定,难以适应现场工况变化。为实现取样比在线调节,提出一种插拔式新型取样器,分流孔数为20,直径为3 mm,沿主管管周均匀布置,取样截面上游设置螺旋器诱发来流形成均匀螺旋环状流,通过特殊设计的取样管可动态改变分流孔的连接方式从而获得期望的取样比。根据取样孔和主流孔阻力平衡关系,推导气液相分流系数公式,并在气液两相流试验环道上进行试验验证。结果表明气液相分流系数主要取决于取样孔和主流孔的数目,不受气液相折算速度、入口流型的影响,气液相流量测量最大误差小于±5%;与单孔取样相比,三孔取样阻力损失更低,同时由于进行了多点取样,降低了对液膜均匀程度的依赖,能够在更低的气液相流速工况下工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号