首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
超材料吸波体具有超薄和强谐振等特点,可用于高灵敏度传感。设计了微波段可用于检测介质折射率的超材料吸波体传感器,通过仿真设计和参数优化,得到了工作频段内单频点谐振、高吸收的吸波结构,分析了其吸波机理。吸波体表面加盖不同折射率的介质板,会导致谐振吸收频点发生不同幅度的频移,经分析,当介质板厚度大于2mm时,谐振吸收频点偏移仅与待测板折射率有关。通过对仿真数据进行拟合,得到了谐振频率与折射率之间的线性函数关系并分析了传感器的性能,最后实验验证了二者的函数关系。设计的超材料吸波体传感器灵敏度达到了1 592MHz/RIU,FoM值达到7.026 9/RIU。  相似文献   

2.
文章设计了一种基于超材料的X波段双频吸波体,其结构单元由2个同心圆环的谐振结构、介质基板和金属基底组成。利用3D有限时域差分(finite difference time domain,FDTD)算法对吸波体的电磁波吸收特性进行数值模拟,该吸波体在X波段有8.842、11.86GHz 2个吸收频点,吸收率分别为98.86%、94.09%,基板的厚度是其中心频率工作波长的1/57。同时计算分析了不同极化角吸收率,结果表明该吸波体具有极化不敏感特性。对吸波体的结构参数(如基板厚度、介电常数和损耗角正切)对吸波性能的影响也进行了分析研究。  相似文献   

3.
设计了一种基于双层电阻膜的宽频带、极化不敏感和宽入射角的超材料吸波体,该吸波体结构单元依次由圆环电阻膜、介质基板、圆环电阻膜、介质基板和金属背板组成。采用时域有限差分算法对其进行数值模拟分析,仿真得到的反射率和吸收率表明:该吸波体在11.5~20.3 GHz范围内对入射电磁波有大于90%以上的强吸收特性。仿真得到的不同极化角和不同入射角表明该吸波体具有极化不敏感和宽入射角特性。进一步仿真得到各个结构参数对吸收率的影响表明:该双层电阻膜结构吸波体对电磁波的吸收主要是基于电路谐振机制,通过对介质基板厚度和电阻膜宽度、电阻值的设计可以对频率范围和工作带宽进行调节,使吸波体实现超宽带吸收。  相似文献   

4.
设计了基于集总电阻的超宽频带微波超材料吸波体,并通过仿真和实验进行了验证.依据等效媒质理论,通过S参数反演法计算了加载集总电阻的超材料吸波体结构等效电磁参数.结果表明:复合结构吸波体超宽频强吸收特性源于良好的阻抗匹配以及电谐振和磁谐振.此外,设计的复合超材料吸波体具有极化不敏感和宽角度吸收特性.最后,通过实验测试得到的复合超材料吸波体吸收率大于85%的相对带宽达到130.2%.设计的超宽频带吸波体将在电磁能量捕获和隐身领域具有广阔的应用前景.  相似文献   

5.
基于平行金属线的太赫兹准全向超材料吸波体   总被引:1,自引:0,他引:1  
该文基于平行金属线设计了一种具有准全向吸波特性的太赫兹超材料吸波体,其准全向吸波特性是通过提高超材料的结构对称性实现的.理论和仿真结果表明:随着超材料结构对称性的提高,超材料吸波体的极化敏感度逐渐降低直至达到任意极化吸波.仿真的不同入射角下的吸收率与表面电流分布表明:平行于介质基板的磁场分量在平行金属线之间激发的反向平行电流导致了结构的电磁谐振,因而在极宽的入射角下该超材料吸波体仍能对电磁波进行高效吸收.提取的等效阻抗实部表明:可以通过调节基板两侧金属线的尺寸,来实现吸收频率处超材料吸波体一侧与自由空间近似阻抗匹配,另一侧与自由空间阻抗不匹配,从而使得反射和传输同时最小、吸收最高.仿真的能量损耗分布表明:该吸波体的强吸收主要源于基板的介质损耗.该太赫兹吸波体可能在爆炸物探测和材料识别等领域具有广泛的应用.  相似文献   

6.
基于石墨烯的光电特性设计了一种光学透明、柔性和宽带可调的低频段超材料吸波体,同时采用商业电磁仿真软件CST Microwave studio对不同石墨烯费米能级下吸波体的吸收特性进行了计算.结果表明:当石墨烯费米能级为OeV时,吸波体在600 MHz~1 GHz的范围内其吸收率超过了90%;改变电压可以改变石墨烯的费米能级,从而可以调节其吸收率.此外,通过仿真证实,吸波体具有极化不敏感和宽入射角度的吸收特性,同时,其也具有吸收率高、柔性、可见光透明和宽带可调等优点,因此其在低频段电磁隐身、探测和传感等领域具有潜在的应用价值.  相似文献   

7.
本文利用石墨烯的电光特性设计了一种可见光透明且振幅可调的超材料吸波体.首先通过商业软件CST Microwave Studio 2011模拟了石墨烯费米能级为0.5 eV时,介质层厚度对吸波体吸收特性的影响,仿真结果表明,介质层厚度从1.3 mm增加到1.6 mm,吸波体的中心频率从84 GHz红移到67 GHz,且吸收率几乎不变;其次模拟了介质层厚度为1.5 mm时,石墨烯费米能级对吸波体吸收特性的影响,仿真结果表明,通过改变电压来改变石墨烯的费米能级可以使吸波体实现振幅可调的功能,其调制深度可达47.9%左右,并且通过仿真证实了该吸波体还具有极化不敏感及入射角度不敏感的特性;最后对该吸波体表面电流分布及内部的空间电场进行仿真与分析,并阐述了其电磁吸波及振幅可调的机理.该超材料吸波体不仅具有超高的电磁波吸收率,并且具有可见光透明和振幅可调的功能,在隐身、探测和通信等领域具有潜在的应用价值.  相似文献   

8.
将3D超材料吸波结构和磁性吸波材料相结合使用,对宽频带微波超材料吸收结构进行了设计优化和电磁场仿真研究.利用磁性材料本身的电磁波吸收性能和周期性超材料吸波单元的频率可设计性,并充分考虑了3D渐变单元的电磁场匹配和多次反射吸收的情况,设计了由圆台形单元组成的周期性吸波结构:每个圆台由20层尺寸渐变的金属谐振单元和以羰基铁粉为吸波填充材料的磁性复合层相间堆叠而成.采用电磁仿真软件CST Microwave Studio进行了结构设计以及吸波效果和电磁场分析,结果表明:此结构在4.5 G~18 GHz频率范围内电磁波吸收效果较好,正入射的吸收率大于90%.仿真和分析结果也表明,吸波材料和超材料相结合,在厚度不超过5 mm的情况下,所能够实现的吸波频率的下限约为4 GHz.  相似文献   

9.
对基于涡旋谐振环的AMC结构引入介质损耗,得到了一种“完美”吸波体,实现了单一频点2 GHz下较强的窄带吸波;然后加载集总参数元件拓展吸波体的频带宽度,在低频超宽带1.7 ~ 2.2 GHz范围实现了90%以上的吸收率,并对其吸波机理进行了分析;最后将宽带吸波体敷设到开缝腔体内壁上抑制腔体谐振,解决了屏蔽腔体的高谐振问题,开辟了超材料的一个新的应用领域。  相似文献   

10.
对基于涡旋谐振环的人工磁导体(AMC)结构引入介质损耗,得到了一种"高吸波率"吸波体,实现了单一频点2 GHz下较强的窄带吸波;然后加载集总参数元件拓展吸波体的频带宽度,在低频超宽带1.7~2.2 GHz范围实现了90%以上的吸收率,并对其吸波机理进行了分析;最后将宽带吸波体敷设到开缝腔体内壁上抑制腔体谐振,解决了屏蔽腔体的高谐振问题,开辟了超材料的一个新的应用领域。  相似文献   

11.
基于石墨烯的电磁可调性与具有特殊电磁响应的无源金属结构耦合,设计了三明治结构微波吸波超表面,系统研究了金属结构和石墨烯电性对吸波性能的调控。通过三维全波电磁场仿真,证实可以通过调节石墨烯方阻改变谐振频率处的吸波率,于740 Ω/sq实现微波的完美吸收,且由担任相移介质的聚丙烯的厚度控制谐振频率。构建l 石墨烯结构与金属微结构杂化超表面,对引入金属谐振模式进一步增强微波吸收的超表面设计,证实了可通过调节石墨烯方阻获得频率23.2 GHz和36.4 GHz处的微波完美吸收以及由其确定的宽带吸收。分析了作为主要结构参数的金属线宽、周期、金属石墨烯间距对吸波率与频率的影响。该研究在拓展超表面设计与石墨烯应用方面有着一定的价值。  相似文献   

12.
设计了一种基于狄拉克半金属的超材料太赫兹宽频及双频吸波体.该吸波体由三层结构组成,上层为狄拉克半金属层,中间为介质层,底层为金属基底.首先设计了U型的单峰吸波体,该吸波体能够实现在6.02THz处的完美吸收.通过研究单峰吸波体的表面电流分布可知,入射太赫兹能量的吸收主要来自沿U型臂方向上电场引起的电偶极子振荡.然后通过多个吸收峰叠加扩展带宽的原理,设计出了双频和宽频吸波体.仿真结果表明,本文设计的双频吸波体能够在5.33THz和5.86THz处实现94.7%及91%的吸收率,宽频吸波体在5.59THz到5.90THz之间吸收率可达90%以上.同时,利用狄拉克半金属电导率的可调节性,通过改变狄拉克半金属的费米能级,无需优化几何结构和重新制造结构,便可以实现共振吸收峰频率的动态调谐.  相似文献   

13.
实现宽带吸收是超材料吸波体研究面临的主要问题之一.基于此设计了鱼刺状宽带超材料吸波体,采用商业电磁仿真软件Microwave studio CST对超材料吸波体的吸收性能进行了计算和分析,结果表明设计的鱼刺状超材料吸波体可以在较宽的频率范围内实现电磁波的高吸收,在89.68~94.36GHz之间吸收率保持在90%以上.结构单元具有简单、较容易制备等优点.  相似文献   

14.
利用石墨烯的电导率可调特性设计了一种超宽带可调超材料吸波体。模拟计算了不同石墨烯费米能级时吸波体的吸收率,结果表明,当石墨烯费米能级为0.7 eV时,吸波体在1.74 GHz ~10.44 GHz 的吸收率保持在90%以上,实现了电磁波的超宽带吸收;当改变外加电压使石墨烯的费米能级从0.7 eV逐渐减少到0 eV时,吸波体在1.74 GHz~10.44 GHz的吸收率逐渐下降,其调制深度可达53.8%,实现了吸收率可调的功能;通过对表面电流分布进行仿真与分析,阐述了其电磁波宽带吸收及吸收率可调的机理;模拟分析了石墨烯费米能级为0.7 eV时,入射波极化状态和入射角度对吸波体吸收特性的影响,结果表明,由于结构单元的旋转对称性,吸波体的吸收特性具有极化不敏感的特点;随着电磁波入射角度的增大,其吸收率逐渐降低。  相似文献   

15.
为了实现太赫兹波调制器件对太赫兹波的快速响应,设计一种基于二氧化钒(VO_2)电阻膜的太赫兹波段宽带可调谐超材料吸波体,研究不同温度时吸波体的吸收率,并通过监控表面电流分布,分析吸波体宽带吸收以及可调吸收的机理。结果表明:吸波体在温度为35℃时表现出宽带吸收特性,吸收率大于90%的频段频率为6.508~9.685 THz,带宽为3.177 THz,通过改变温度可以实现吸波体吸收率的调控;该吸波体对电磁波的吸收具有极化不敏感和宽角度吸收的特点。  相似文献   

16.
本文提出了一种基于体Dirac半金属(BDS)和水的太赫兹(THz)双可调谐宽带超材料吸波体.与传统的单控吸振器不同,此吸波体可以通过温度和费米能级进行调节.模拟结果表明,当水和BDS的温度和费米能级分别调整在15℃和30 meV时,吸波体在2.97~6.11 THz频率范围内吸收率均大于90%.与没有注入水或没有BDS组件的吸波体相比,吸收率在90%以上的带宽有了明显提高.此外,通过调节水的温度或BDS的费米能量,吸波体的吸收带宽和强度可以独立或联合控制,而无需重新设计器件.利用水的介电常数可通过温度来调节的特性,以及BDS可通过费米能量来控制的特点,我们解释了双控吸波体的作用机理.本文采用场分析的方法来研究和阐明宽带吸收的物理机理.基于此吸波体优异的性能,本文的研究结果可能在热探测器和太赫兹成像领域有潜在的应用价值.  相似文献   

17.
基于柔性光学透明的ITO导电薄膜和PDMS介质,设计了适用于77GHz车载毫米波雷达电磁屏蔽的超材料吸波体.吸波体在74GHz~78GHz范围内的吸收率超过了90%,中心频率77GHz处的吸收率达到了98%.仿真证实该吸波体的吸收特性具有极化不敏感的特点.吸波体具有结构简单、柔性、光学透明和极化无关的优点,在77GHz车载毫米波雷达电磁屏蔽中具有重要的应用价值.  相似文献   

18.
利用VO_2(二氧化钒)薄膜的电导率可调特性设计了一种太赫兹波段可调超宽带超材料吸波体.首先,模拟计算了不同温度时吸波体的吸收率,结果表明,当温度为45℃时吸波体在2.854 THz~8.938 THz的吸收率保持在90%以上,实现了电磁波的超宽带吸收;当温度从45℃逐渐增加到80℃时,吸波体在2.854 THz~8.938 THz的吸收率逐渐下降,实现了吸收率可调的功能;其次,通过对表面电流分布进行监控与分析,阐述了其电磁波宽带吸收及吸收率可调的机理;最后,模拟分析了温度为45℃时,入射波极化状态和入射角度对吸波体吸收特性的影响.结果表明,由于结构单元的旋转对称性,吸波体的吸收特性具有极化不敏感的特点;随着电磁波入射角度的增大,其吸收率逐渐降低.  相似文献   

19.
设计和制作了一种基于十字微结构的吸波体,基本单元由十字微结构、羰基铁吸波贴片以及金属背板组成。采用基于时域有限积分法,仿真了十字微结构的结构参数对吸波贴片吸波性能的影响。仿真结果表明,保持吸波体总厚度2.5 mm不变的情况下,当吸波体单元尺寸p=20 mm、十字臂长L=6 mm、十字臂宽w=2 mm时,吸收峰最低值能达到-40 d B,~(-1)0d B以下吸收带宽从5.8~9.3 GHz移动到4.27~8.06 GHz;当吸波体单元尺寸p=20 mm、十字臂长L=9 mm、十字臂宽w=2mm时,吸波带宽最宽,~(-1)0 d B以下吸收带宽从5.8~9.3 GHz移动到3.5~8.5 GHz。十字微结构结构参数的改变极大地拓展了吸波贴片的吸波带宽,降低了共振频率的反射率。根据仿真结果,制备了样品并测试,测试结果与仿真结果一致。  相似文献   

20.
为实现超材料吸波体吸收频率的智能调控,采用理论分析与模拟仿真相结合的方法,首先设计了一种双波段超材料吸波体,然后在双波段超材料吸波体中加入电流变液,通过改变电流变液外加电场的强度实现了双波段超材料吸波体吸收频率的智能调控。结果表明:双波段超材料吸波体在7.403 GHz和17.511 GHz处出现了两个吸收峰,吸收率分别为99.8%和70%;随着电流变液外加电场强度的增加,吸波体的吸收频率逐渐往低频发生移动,吸收频率调节率高达55%,由此提出了一种智能调控的双波段超材料吸波体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号