首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
A new method for separating and recovering tin from a low-grade tin middling with high Si content and low Fe content by roasting with anthracite coal was researched by studying the reaction mechanism and performing an industrial test, in which the Sn was sulfurized into Sn S(g) and then collected using a dust collector. The Fe–Sn alloy may be formed at roasting temperatures above 950°C, and like the roasting temperature increases, the Sn content and Sn activity in this Fe–Sn alloy decrease. Also, more FeS can be formed at higher temperatures and then the formation of FeO–FeS with a low melting point is promoted, which results in more serious sintering of this low-grade tin middling.And from the thermodynamics and kinetics points of view, the volatilization of the Sn decreases at extremely high roasting temperatures. The results of the industrial test carried out in a coal-fired rotary kiln show that the Sn volatilization rate reaches 89.7% and the Sn is concentrated in the collected dust at a high level, indicating that the Sn can be effectively extracted and recovered from the low-grade tin middling with a high Si content and low Fe content through a reduction–sulfurization roasting process.  相似文献   

2.
The co-reduction roasting and grinding magne -tic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250℃ for 60 min, a grinding fineness of -43 μm accounting for 69.02wt% of the total, and a low-intensity magnetic field strength of 151 kA/m. The mineral composition, microstructure, and state of the roasted products were analyzed, and the concentrations of CO and CO2 were analyzed in the co-reduction roasting. Better results were achieved with a small fluorite dosage (≤ 4wt%) in the process of co-reduction. In addition, F- was found to reduce the melting point and viscosity of the slag phase because of the high content of aluminate and silicate minerals in the blast furnace dust. The low moisture content of the blast furnace dust and calcic minerals inhibited the hydrolysis of CaF2 and the loss of F-. Compared with the blast furnace dust from Chengdeng, the blast furnace dusts from Jiugang and Jinxin inhibited the diffusion of F- when used as reducing agents, leading to weaker effects of fluorite.  相似文献   

3.
The hot deformation behavior of a newly developed 51.1Zr–40.2Ti–4.5Al–4.2 V alloy was investigated by compression tests in the deformation temperature range from 800 to 1050 ℃ and strain rate range from 10-3to 100 s-1. At low temperatures and high strain rates, the flow curves exhibited a pronounced stress drop at the very beginning of deformation, followed by a slow decrease in flow stress with increasing strain. The magnitude of the stress drop increased with decreasing deformation temperature and increasing strain rate. At high temperatures and low strain rates, the flow curves exhibited typical characteristics of dynamic recrystallization. A hyperbolic-sine Arrhenius-type equation was used to characterize the dependences of the flow stress on deformation temperature and strain rate. The activation energy for hot deformation decreased slightly with increasing strain and then tended to be a constant value. A microstructural mechanism map was presented to help visualize the microstructure of this alloy under different deformation conditions.  相似文献   

4.
《矿物冶金与材料学报》2020,27(11):1449-1461
The microwave-assisted reduction behaviours of two low-grade iron ores having a similar Fe content of 49wt% but distinctly different mineralogical and liberation characteristics were studied. Their performances in terms of the iron grade and recovery as obtained from statistically designed microwave (MW) roasting followed by low-intensity magnetic separation (LIMS) experiments were compared. At respective optimum conditions, the titano-magnetite ore (O1) could yield an iron concentrate of 62.57% Fe grade and 60.01% Fe recovery, while the goethitic ore (O2) could be upgraded to a concentrate of 64.4% Fe grade and 33.3% Fe recovery. Compared with the goethitic ore, the titano-magnetite ore responded better to MW heating. The characterization studies of the feed and roasted products obtained at different power and time conditions using X-ray diffraction, optical microscopy, vibrating-sample magnetometry, and electron-probe microanalysis explain the sequential reduction in the iron oxide phases. Finally, taking advantage of the MW absorbing character of the titano-magnetite ore, a blend of the same with the goethite-rich ore at a weight ratio of 60 : 40 (O2 : O1) was subjected to MW roasting that resulted in a concentrate of 61.57% Fe grade with a Fe recovery of 64.47%.  相似文献   

5.
Ti_(50)Zr_(27)Cu_8Ni_4Co_3Fe_2Al_3Sn_3(at%) amorphous filler metal with low Cu and Ni contents in a melt-spun ribbon form was developed for improving mechanical properties of Ti–6Al–4V alloy brazing joint through decreasing brittle intermetallics in the braze zone. Investigation on the crystallization behavior of the multicomponent Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous alloy indicates the high stability of the supercooled liquid against crystallization that favors the formation of amorphous structure. The Ti–6Al–4V joint brazed with this Ti-based amorphous filler metal with low total content of Cu and Ni at 1203K for 900s mainly consists of α-Ti, β-Ti,minor Ti–Zr-rich phase and only a small amount of Ti_3Cu intermetallics, leading to the high shear strength of the joint of about 460 MPa. Multicomponent composition design of amorphous alloys is an effective way of tailoring filler metals for improving the joint strength.  相似文献   

6.
A metastable P-type Ti-30Nb-lMo-4Sn alloy with ultralow elastic modulus and high strength was fabricated.Under the solution treatment state,the Ti-30Nb-1Mo-4Sn alloy possesses low yield strength of about 130 MPa owing to the presence of the coarse α " martensitic laths.Upon a cold rolling and annealing process,the martensitic transformation from β to α" is significantly retarded due to the inhibitory effect of grain boundaries and dislocations.As a result,the metastable β phase with low total amount of β-stabilizers is retained to room temperature,giving rise to a low modulus of 45 GPa.Meanwhile,nano-sized a precipitates and dislocation tangles play a key role in strengthening the Ti-30Nb-1Mo-4Sn alloy,resulting in a high tensile strength of ~ 1000 MPa.With low elastic modulus and high strength,the metastable P-type Ti-30Nb-1Mo-4Sn alloy could be a potential candidate for biomedical materials.  相似文献   

7.
The evolutions of phase constitutions and mechanical properties of a β-phase Ti–36Nb–5Zr(wt%) alloy during thermo-mechanical treatment were investigated. The alloy consisted of dual(β t α″) phase and exhibited a double yielding phenomenon in solution treated state. After cold rolling and subsequent annealing at 698 K for 20 min, an excellent combination of high strength(833 MPa) and low modulus(46 GPa) was obtained. The high strength can be attributed to high density of dislocations, nanosized α phase and grain refinement. On the other hand, the low Young's modulus originates from the suppression of chemical stabilization of β phase during annealing, which guarantees the low β-phase stability. Furthermore, the single-crystal elastic constants of the annealed Ti–36Nb–5Zr alloy were extracted from polycrystalline alloy using an in-situ synchrotron X-ray technique. The results indicated that the low shear modulus C44 contributes to the low Young's modulus for the Ti–36Nb–5Zr alloy, suggesting that reducing C44 through thermo-mechanical treatment might be an efficient approach to realize low Young's modulus in β-phase Ti alloys. The results achieved in this study could be helpful to elucidate the origin of low modulus and sheds light on developing novel biomedical Ti alloys with both low modulus and high strength.  相似文献   

8.
Tramp elements such as tin are considered harmful to steel because of hot brittleness they induce at high temperatures. Because tramp elements retained in steel scrap will be enriched in new steel due to the difficultly of their removal, studies on the precipitation behavior of tin are essential. In this study, the effects of different inclusions on the precipitation behavior of tin in steel were studied. The results show that the tin-rich phase precipitates at austenite grain boundaries in an Fe-5%Sn alloy without MnS precipitates, whereas Sn precipitates at the boundaries of MnS inclusions in steel that contains MnS precipitates. MnS is more effective than silicon dioxide or aluminum oxide as a nucleation site for the precipitation of the tin phase, which is consistent with the disregistry between the lattice parameters of the tin phase and those of the inclusions.  相似文献   

9.
The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe–As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe–0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe–4wt%As and Fe–10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe–0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe–4wt%As and Fe–10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2 As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe–10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2 As phase in Fe–4wt%As and Fe–10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.  相似文献   

10.
The hot deformation behavior,hot workability and dynamic recrystallization evolution of Zr-1.0(wt%) Be alloy in single a phase were investigated by conducting hot compression tests.The strain rates ranging from 10~(-3) s~(-1) to 10° s~(-1) and testing temperatures varying from 650 ℃to 850℃ were used.Flow stress was found to increase with increasing strain rate and decrease with the increment of the deformation temperature.A constitutive equation of flow behavior was established to describe the dependence of flow stress on strain rate and deformation temperature.The activation energy for deformation of Zr-1.0Be alloy was determined to be Q= 301 kJ/mol.The processing map of Zr-1.0Be alloy was constructed at strain rates ranging from 10~(-3) s~(-1) to 10° s~(-1) and deformation temperatures varying from 650 ℃ to 850 ℃ at the true strain of 0.7.A processing map was used to identify the best domains of thermal processing,including a domain at a temperature of 650 ℃ and strain rate of 10~(-3) s~(-1) as well as another domain at deformation temperatures ranging from 800 ℃ to 850 ℃ and strain rates varying from 10~(-3) s~-~(-1) to 10~(-1) s~(-1).Microscopic analysis of Zr-l.OBe alloy showed that the flow instability and kink were very obvious at low temperatures and high strain rates.At high temperatures and low strain rates,the dynamic recrystallization became the main softening mechanism during hot working.  相似文献   

11.
This study investigates a purification process for metallurgical-grade silicon (MG-Si) in which Si is alloyed with tin (Sn) and CaO-SiO2-CaCl2 slag is used to remove boron (B) impurity. Acid leaching was performed to remove the Sn phase after slag refining to recover high-purity Si from the Si-Sn alloy. The effect of refining time was investigated, and acceptable refining results were realized within 15 min. The effects of slag composition and Sn content on the removal of B were also studied. The results indicate that increasing Sn content favors B removal. With the increase of Sn to 50% of the alloy, the final B content decreased to 1.1×10-4wt%, 93.9% removal efficiency.  相似文献   

12.
含锡锌铁矿的矿物学性及其综合利用新技术   总被引:2,自引:0,他引:2  
研究含锡锌复杂铁精矿的矿物学特性,并开发含锡锌铁精矿球团预氧化-弱还原焙烧新技术。研究结果表明:铁精矿中的主要载铁矿物为磁铁矿,主要含锡矿物为锡石,主要含锌矿物包括闪锌矿和铁闪锌矿,其中闪锌矿占绝大部分;以单体锡石形式存在的锡占54.78%,而磁铁矿颗粒中的锡占41.31%;磁铁矿中的锡绝大部分为锡石的微细粒包体;88.95%的锌存在于硫化矿中,闪锌矿多以单体粒状或以不规则状与磁铁矿及其他矿物构成连生体;在w(C)/w(Fe)为0.2,焙烧温度为1075℃,时间为50min时,球团矿抗压强度为2 380N/个,Sn和Zn的挥发率分别为71.86%和56.28%,残余Sn和Zn含量均小于0.08%。  相似文献   

13.
基于新型含锡铁素体不锈钢,采用冶金反应平衡对其冶炼过程进行实验室条件下的研究,对其室温力学性能、耐腐蚀性能进行了研究,同时分析Sn对铁素体不锈钢基体的微观结构的影响规律,分析脱氧夹杂物的形貌和成分演变.研究结果表明,尽管锡的熔点极低,其收得率较高,锡在硫化物周围的富集现象明显;含锡铁素体不锈钢性能优于SUS430不锈钢,具有较好的塑形和强度,可满足深冲加工性能的要求,而耐腐蚀性能明显优于SUS430铁素体不锈钢,可部分代替其在生产中的应用.  相似文献   

14.
利用锡离子及亚铁离子在磷酸二氢钠缓冲溶液形成沉淀物被除去方式进行样品预处理,以安捷伦ZORBAXEclipseXDB-C18色谱柱为分离柱,以20mmol/L磷酸二氢钠溶液-甲醇体系(48∶52)为流动相,215nm为波长检测条件,提出了监测电渡液中有效添加剂(α-萘酚聚氧乙烯醚,α-萘酚磺酸聚氧乙烯醚)含量的高效液相色谱法(HPLC).此方法样品损失率小于4%,α-萘酚聚氧乙烯醚和α-萘酚磺酸聚氧乙烯醚的平均回收率为966%~989%,分析结果偏差在005g/L之内.该方法快速、准确、灵敏度高、重现性好,完全满足镀锡工艺监测的要求.  相似文献   

15.
介绍了用Si(Li)探测器作探头的携带式高分辨合金分析仪的结构原理和实测结果。其仪器的分析范围可覆盖Ag,Cd,Sn,Sb,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,As,Hf,Au,Ta,W,Pb,Bi,Zr,Nb和Mo等元素,采用^109Cd和^55Fe作激发源,由笔记本式计算机与电子插件所组成的计算机多道分析系统,实现数据的采集和显示,元素间干扰效应的修正,合金识别以及牌号查询与合  相似文献   

16.
The effects of high pressure rheo-squeeze casting (HPRC) on the Fe-rich phases (FRPs) and mechanical properties of Al-17Si-(1,1.5)Fe alloys were investigated. The alloy melts were first treated by ultrasonic vibration (UV) and then formed by high-pressure squeeze casting (HPSC). The FRPs in the as-cast HPSC Al-17Si-1Fe alloys only contained a long, needle-shaped β-Al5FeSi phase at 0 MPa. In addition to the β-Al5FeSi phase, the HPSC Al-17Si-1.5Fe alloy also contained the plate-shaped δ-Al4FeSi2 phase. A fine, block-shaped δ-Al4FeSi2 phase was formed in the Al-17Si-1Fe alloy treated by UV. The size of FRPs decreased with increasing pressure. After UV treatment, solidification under pressure led to further refinement of the FRPs. Considering alloy samples of the same composition, the ultimate tensile strength (UTS) of the HPRC samples was higher than that of the HPSC samples, and the UTS increased with increasing pressure. The UTS of the Al-17Si-1Fe alloy formed by HPSC exceeded that of the Al-17Si-1.5Fe alloy formed in the same manner under the same pressure. Conversely, the UTS of the Al-17Si-1Fe alloy formed by HPRC decreased to a value lower than that of the Al-17Si-1.5Fe alloy formed in the same manner.  相似文献   

17.
The main objective of this paper was to fabricate Cu10Sn5Ni alloy and its composites reinforced with various contents of Si3N4 particles (5wt%,10wt%,and 15wt%) and to investigate their dry sliding wear behavior using a pin-on-disk tribometer.Microstructural examinations of the specimens revealed a uniform dispersion of Si3N4 particles in the copper matrix.Wear experiments were performed for all combinations of parameters,such as load (10,20,and 30 N),sliding distance (500,1000,and 1500 m),and sliding velocity (1,2,and 3 m/s),for the alloy and the composites.The results revealed that wear rate increased with increasing load and increasing sliding distance,whereas the wear rate decreased and then increased with increasing sliding velocity.The primary wear mechanism encountered at low loads was mild adhesive wear,whereas that at high loads was severe delamination wear.An oxide layer was formed at low velocities,whereas a combination of shear and plastic deformation occurred at high velocities.The mechanism at short sliding distances was ploughing action of Si3N4 particles,which act as protrusions;by contrast,at long sliding distances,direct metal-metal contact occurred.Among the investigated samples,the Cu/10wt% Si3N4 composite exhibited the best wear resistance at a load of 10 N,a velocity of 2 m/s,and a sliding distance of 500 m.  相似文献   

18.
采用自制的铜模具制备不同成分Cu-xSn-yFe(其中x、y表示质量百分比)合金,研究对比了铸态及不同处理态下Cu-xSn-yFe合金抗拉强度和电阻率的变化规律。结果表明:随着Sn和Fe添加量的增加,Cu-xSn-yFe合金的抗拉强度和电阻率均增加。正火处理会增加合金电阻率,而与正火态的电阻率相比,轧制后的电阻率皆较低。Sn含量的变化对Cu-xSn-yFe合金电阻率的影响较大,降低含Sn量可改善Cu-xSn-yFe合金的导电性。经退火处理后,Cu-xSn-yFe合金的电阻率明显降低,抗拉强度也会略有所降低。当Fe含量为10 wt·%,Sn含量为3 wt·%时,该合金冷轧制处理后的抗拉强度达775 MPa,但电阻率仅为7.509μΩ·cm.当Fe含量为5 wt·%,Sn含量为2 wt·%时,该合金经退火处理后其抗拉强度为552 MPa,且电阻率为1.92μΩ·cm.  相似文献   

19.
以金红石、钛精矿和Al为原料采用铝热自蔓延法制备出低氧高钛铁合金。研究不同反应体系的相关热力学,考察配铝量对铝热自蔓延熔炼效果的影响,采用XRD,SEM以及化学分析等技术对高钛铁合金进行表征。研究结果表明:反应体系的绝热温度大于1 800 K,反应能自我维持进行;铝还原TiO2反应的单位质量热效应较低,铝还原铁氧化物反应的单位质量热效应较高;合金主要由TiFe2,Fe,TiO2和Al2O3等相组成,氧化物夹杂相的存在是合金中氧含量高以及合金微观缺陷存在的直接原因;合金中氧含量最低为2.62%;钛、铝、铁和硅质量分数分别为61.58~66.27%,4.05%~9.20%,16.15%~20.53%及2.78%~3.82%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号