首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
为提高玄武岩纤维钢渣粉混凝土早龄期抗压强度,用磁化水代替普通水拌制混凝土。采用10种不同水流量流经磁化器后的水分别搅拌混凝土,进行混凝土早龄期抗压强度试验后选出合适水流量。合适水流量流经磁化器后的水分别搅拌10%、12%、14%、16%和18%不同钢渣粉掺量下玄武岩纤维钢渣粉混凝土,再进行早龄期抗压强度试验,得出合适的钢渣粉掺量。试验结果表明:玄武岩纤维掺量3 kg/m~3和钢渣粉掺量15%时,合适水流量为16 L/min。磁化水加快了混凝土水化速率,生成更多水化产物,有效填充了结构中孔隙,混凝土强度得到提高。7 d抗压强度达到最大值26.4 MPa,较未用磁化水搅拌的混凝土早期强度增长15.3%。钢渣粉合适掺量范围为12%~15%。  相似文献   

2.
为明确不同磁程长度条件下磁化水对混凝土压拉性能的影响,用不同磁程长度磁化后的磁化水拌制混凝土,制作立方体试块进行压拉强度试验,研究磁化水混凝土压拉强度的变化规律;并对其机理进行分析。试验结果表明:磁程长度显著影响混凝土压拉强度的增幅;磁程长度不同时,混凝土28 d抗压强度增幅为4.72%~24.80%;28 d劈裂抗拉强度增幅为3.49%~17.05%;水被磁化过程中,存在最佳磁程长度,在磁感应强度B=260 m T,水流速度V=0.8 m/s时,最佳磁程长度L=360 mm,此时磁化水混凝土压拉性能改善最显著。磁化水对混凝土早期强度提高更明显。  相似文献   

3.
为提高混凝土的早期强度,用磁化水替代普通水拌制混凝土。磁感应强度选取为285 m T,进行了5种水流速度下磁化水增强补偿收缩混凝土和喷射补偿收缩混凝土早龄期抗压强度试验,探讨混凝土早期强度增强机理。试验结果表明:相比于普通混凝土,补偿收缩混凝土7 d抗压强度在水流速度0.9 m/s增长幅度达6.4%;喷射补偿收缩混凝土7 d抗压强度在水流速度2.1 m/s增长幅度可达14.2%。磁化水能够弥补速凝剂造成的混凝土7 d强度损失。相比于普通补偿收缩混凝土,喷射补偿收缩混凝土7 d抗压强度在水流速度2.1 m/s提高幅度可达11%。  相似文献   

4.
采用干湿循环法,研究了普通混凝土和混杂纤维混凝土标准立方体试块(150 mm×150 mm×150 mm)对面侵蚀,在800和6 000 mg/L两种硫酸钠侵蚀溶液质量浓度下,分别在侵蚀龄期为0,30,60,90,180,210 d的抗硫酸盐侵蚀性能.结果表明:当侵蚀龄期达210 d,侵蚀溶液质量浓度为800和6 000 mg/L时,普通混凝土抗压强度分别劣化了5.6%和10.0%,劈裂抗拉强度分别劣化了3.0%和5.1%;混杂纤维混凝土抗压强度分别劣化了4.0%和6.3%,劈裂抗拉强度分别劣化了0.51%和3.8%;侵蚀深度为1.5 mm时,普通混凝土的SO2-4质量分数分别为0.83%和1.03%,混杂纤维混凝土SO2-4质量分数分别为0.79%和1.00%.  相似文献   

5.
通过试验分析了3 d、7 d、28 d时不同沙漠砂替代率对锂渣聚丙烯纤维混凝土立方体抗压强度、轴心抗压强度和劈裂抗拉强度的影响规律。结果表明:在锂渣掺量20%,聚丙烯纤维1.5 kg/m3时,利用沙漠砂替代锂渣聚丙烯纤维混凝土中细度模数小于3的工程用砂成效显著,具有深远的社会意义和优越的经济价值。随着沙漠砂替代率增大,沙漠砂混凝土抗压强度和劈裂抗拉强度均呈先增大后减小趋势,其中当沙漠砂替代率为30%时为最优掺量,较基准组28 d抗拉强度提高53.26%。  相似文献   

6.
为制备高性能混凝土,对不同纳米Si O_2掺量和不同玄武岩纤维掺量的混凝土进行了28 d压拉性能试验研究;并对试验结果进行分析与机理探讨。结果表明:掺入玄武岩纤维能提高混凝土的劈裂抗拉强度,掺量为3 kg/m~3时劈裂抗拉强度较素混凝土提高8.71%。掺入纳米Si O_2能提高混凝土的抗压强度,掺量为1.2%时较素混凝土提高7.07%。纳米Si O_2和玄武岩纤维复合掺入时,当纳米Si O_2掺量为1.2%、玄武岩纤维掺量为3 kg/m~3时效果最好,劈裂抗拉强度、抗压强度相较于素混凝土分别提高17.42%和9.04%。  相似文献   

7.
为提高玄武岩纤维混凝土的压拉性能,将钢渣粉掺入玄武岩纤维混凝土中,进行了不同掺量下钢渣粉对玄武岩纤维混凝土7 d和28 d压拉强度影响试验,并对试验结果进行了分析。试验结果表明:相比于基准混凝土,玄武岩纤维钢渣粉混凝土在钢渣粉掺量分别为12%、15%、18%时,其28 d抗压强度分别提高2.1%、2,6%、-1%;28 d劈裂抗拉强度分别提高4.1%、9.2%、-1%。钢渣粉掺量15%时为合适掺量,28 d抗压、劈裂抗拉强度均达到最大。钢渣粉的掺入使混凝土7 d压拉强度低于基准混凝土且随着钢渣粉掺量增加而降低,不能用7 d压拉强度推测28 d压拉强度。  相似文献   

8.
通过试验研究骨料含量对混凝土抗压强度、劈裂抗拉强度和自收缩的影响,结果表明:混凝土的抗压强度和劈裂抗拉强度在1d龄期时,受骨料含量的影响较小;骨料含量在55%~70%的范围内,混凝土3,7,14,28d龄期时的抗压强度和劈裂抗拉在随着骨料含量的增加而逐渐增加,骨料含量在70%增加到75%时,混凝土的抗压强度和劈裂抗拉强度随着骨料含量的增加而逐渐减小;混凝土的拉伸徐变的变形随骨料含量的增加而增大;混凝土的自收缩随着骨料含量的增加而逐渐减小。  相似文献   

9.
以页岩陶粒混凝土为基础配方,系统研究了单掺和双掺不同含量的偏高岭土、粉煤灰、钢渣等矿物掺合料对其抗压强度影响,通过SEM和XRD进行了相关的微观结构和组成分析.结果表明当单掺矿物掺和料质量分数为10%时,页岩陶粒混凝土达到最高的抗压强度;双掺和时,总掺量为10%(质量分数)、比例为1∶2的偏高岭土和粉煤灰时,页岩陶粒混凝土的抗压强度最好,其3d、7d和28d的抗压强度分别达到了18.1、28.6和35MPa,对比没有加入矿物掺合料的页岩陶粒混凝土的抗压强度分别增加了417%、267%和250%,主要原因是偏高岭土和粉煤灰的掺加能够优化轻骨料混凝土的微观结构,对强度具有较大贡献.  相似文献   

10.
通过自密实性能试验和早期拉压强度试验,研究不同体积掺量的玄武岩纤维、聚丙烯腈纤维以及玄武岩-聚丙烯腈混杂纤维对自密实混凝土的流动性、间隙通过性以及7d劈裂抗拉强度和立方体抗压强度的影响.试验结果表明,随着纤维掺量的增加,自密实混凝土的流动性和间隙通过性会逐渐降低;混杂纤维对自密实混凝土抗拉强度的提升效果较抗压强度更为显著,当玄武岩纤维和聚丙烯腈纤维的掺量分别为0.20%和0.12%时,劈裂抗拉强度的增幅最大,较素自密实混凝土提高了87.5%.  相似文献   

11.
【目的】为实现建材行业碳减排和固废资源化利用的目标。【方法】以赤泥和煤系偏高岭土为原料制备地聚合物混凝土,采用正交试验方法研究了4种因素对其力学性能的影响。【结果】方差分析表明,水胶比对赤泥-煤系偏高岭土地聚合物混凝土强度有显著影响,其次是N2O/H2O,养护条件和骨胶比的影响较小。根据试验结果,建立了地聚合物混凝土抗压强度与劈裂抗拉强度的数学模型,方程拟合效果良好。进一步分析得到了地聚合物混凝土的优选配比,养护28 d的立方体试件抗压强度和劈裂抗拉强度分别为43.6 MPa和2.87 MPa.借助低场核磁共振测试对不同水胶比的地聚合物混凝土孔隙结构进行了表征,发现地聚合物混凝土内部以微孔为主,可蒸发的自由水含量增加使得孔隙率增大,孔隙结构粗化,宏观上表现为材料强度的降低。本研究可为地聚合物混凝土的推广与工程应用提供一定的理论指导。  相似文献   

12.
通过立方体抗压强度和劈裂抗拉强度试验,研究了单掺及混掺玄武岩纤维和聚丙烯纤维对活性粉末混凝土(RPC)力学性能的影响规律.结果表明:两种纤维的掺加可以改善RPC力学性能;当玄武岩纤维体积掺量为0.15%,聚丙烯纤维体积掺量为0.033%时,RPC抗压强度最高,较素RPC提高了14.1%;当玄武岩纤维体积掺量为0.15%,聚丙烯纤维体积掺量为0.025%时,RPC劈裂抗拉强度最高,较素RPC提高了52.1%.通过统计分析提出了混杂纤维RPC劈裂抗拉强度计算公式,建立了RPC立方体抗压强度与劈裂抗拉强度的换算关系式,可为工程计算提供参考.  相似文献   

13.
以不同配合比的再生混凝土为研究对象,通过抗压强度和劈裂抗拉强度试验分析再生骨料对再生骨料混凝土两种强度变化规律的影响.采用OriginPro 8.5数据分析软件对抗压和抗拉强度进行初步数学函数模拟.结果表明:当再生粗骨料掺量为0%、50%时,再生细骨料使得抗压强度或劈裂抗拉强度变化幅度大,不宜选择;当再生粗骨料掺量为15%、30%时,混凝土劈裂抗拉强度和抗压强度变化都相对平稳;再生粗骨料掺量为15%时混凝土抗压强度相对较高,30%时劈裂抗拉强度相对较高,可根据再生混凝土使用的具体情况来选择.  相似文献   

14.
为了研究碱式硫酸镁水泥混凝土的基本力学性能,利用普通混凝土力学性能试验方法,研究了混凝土立方体抗压强度(f_(cu))、轴心抗压强度(f_c)、劈裂抗拉强度(f_(sp))以及弹性模量(E_c)等基本力学参数。结果表明:(1)在一定范围内,碱式硫酸镁水泥混凝土立方体抗压强度随水灰比的降低而提高。(2)碱式硫酸镁水泥混凝土立方体抗压和劈裂抗拉强度、轴心抗压强度存在着线性关系。(3)碱式硫酸镁水泥混凝土具有更高的劈裂抗拉强度和轴心抗压强度,抗裂性能优异。(4)在C30~C60,碱式硫酸镁水泥混凝土的弹性模量随着抗压强度的增长而增长。高强时,弹性模量明显高于普通硅酸盐混凝土。碱式硫酸镁水泥混凝土在结构设计方面优于普通硅酸盐混凝土。  相似文献   

15.
为了研究油基岩屑掺合料对混凝土各项力学性能的影响,将油基岩屑替代基准组混凝土中的细集料,对不同替代率(0%,5%,10%,20%,30%,40%)和不同养护时间(7 d,28 d)的油基岩屑掺合料混凝土分别进行了抗压强度、抗折强度、劈裂抗拉强度试验。结果表明,油基岩屑掺合料对混凝土的各项力学性能产生了不同程度的影响,混凝土抗压强度、抗折强度、劈裂抗拉强度随着油基岩屑掺入量增大而减小。随着油基岩屑替代率由0%增大到40%,养护28 d的混凝土抗压强度由32. 1 MPa降低至12. 6 MPa,抗折强度由4. 16 MPa降低至2. 18 MPa,劈裂抗拉强度由2. 61 MPa降低至1. 67 MPa。随着油基岩屑替代率的增加,混凝土拉压比总体呈增大趋势。  相似文献   

16.
通过一种新型的振动搅拌方式制备轻质高强钢纤维混凝土(SFHSLC),设置5组钢纤维体积掺量,并与普通强制搅拌方式对比,探讨不同搅拌方式对SFHSLC坍落度、干表观密度、抗压强度、劈裂抗拉强度和弯曲韧性的影响。研究结果表明:与普通搅拌相比,振动搅拌下纤维混凝土坍落度增加10 mm以上,混凝土干表观密度增加明显;钢纤维掺量从0增加至2.0%时,普通搅拌制备的SFHSLC抗压强度在纤维掺量为1.0%时达到最大,而振动搅拌制备的SFHSLC抗压强度随纤维掺量增加持续增长;2种搅拌方式制备的SFHSLC劈裂抗拉强度都随纤维掺量增加而提高,但不同掺量条件下的劈裂抗拉强度都是振动搅拌比普通搅拌的大。在相同钢纤维掺量下,振动搅拌可以明显提高SFHSLC的抗弯强度和裂后韧性。振动搅拌方式可以改善钢纤维的分布状况,比普通搅拌更适合用于SFHSLC的制备。  相似文献   

17.
采用在10~14℃水中养护模拟蒸养混凝土的高湿偏低温使用环境,研究掺加矿粉、粉煤灰和硅灰的混凝土经过(80±2)℃恒温6 h的强度发展。试验结果表明:掺加矿粉、粉煤灰、硅灰可显著提高蒸养混凝土的脱模强度,提高其抗裂性;10~14℃水养至28 d龄期,混凝土出现相对抗压强度倒缩现象,且脱模抗压强度越高的混凝土强度倒缩值也越高;劈裂抗拉强度的发展与其强度高低有关,脱模劈裂抗拉强度相对较低的试件,在整个养护期间,其值缓慢增长,而脱模劈裂抗拉强度相对较高的试件,在整个养护期间,其值出现相对倒缩;蒸养混凝土内部有大量孔隙,多数孔隙中存在针片状AFm相;混凝土在高湿偏低温环境中的吸水膨胀和AFm相向AFt相的转变是造成蒸养混凝土强度倒缩的主要原因。  相似文献   

18.
为建立基于立方体抗压强度的塑性混凝土劈裂抗拉强度预测式,收集了106组关于塑性混凝土劈裂抗拉强度与立方体抗压强度试验数据,在此基础上对我国现行规范推荐的预测式进行误差分析和修正.结果表明,规范GB 50010和DLT 5057推荐的预测式计算得到的塑性混凝土劈裂抗拉强度较实测值偏大,规范DLT 5057推荐的预测式误差较规范GB 50010小;修正后的预测式方差和标准差均较规范推荐预测式小,可供工程计算参考.  相似文献   

19.
磁化水混凝土应用中几个技术问题的研究   总被引:4,自引:0,他引:4  
将电磁式和永磁式磁水器对混凝土性能的影响进行了对比试验,试验结果表明:二者在混凝土抗压强度指标上没有明显差异。但一种根据激磁电流的大小,磁场强度能够连续变化的电磁式磁水器可能更符合磁化水混凝土的生产和研究推广。试验还证明:采用高精度傅立叶变换红外分光光度法检测磁化水磁化度是一种行之有效的方法。最后就磁化水退磁效应的影响和应用前需进行正交试验等关键性技术问题进行了研究,并提出了自己的观点和看法。  相似文献   

20.
为探索聚丙烯纤维(polypropylene fiber,PPF)长度和掺量对低坍落度混凝土的影响,设计了171组基准混凝土和PPF混凝土标准立方体试块,尺寸为150 mm×150 mm×150 mm,并开展了常温下和高温后低坍落度混凝土的抗压强度试验和劈裂抗拉强度试验.基于试验结果给出PPF对低坍落度混凝土抗压强度和劈裂抗拉强度的影响规律,并结合电镜扫描结果分析低坍落度PPF混凝土的微观结构和破坏机理.结果表明:在适宜的长度和掺量范围下,PPF的掺入较明显改善高温前后的力学性能;同时在一定掺量下,发现PPF高温气化有助于混凝土的应力释放,提高了残余抗压强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号