首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
张林 《科技咨询导报》2012,(11):114-115
本文阐述了适应复杂渗储层的深穿透射孔技术、多脉冲复合射孔技术以及负压射孔工艺和定方位射孔工艺的特点及优越性。从射孔器装配结构到射孔弹设计优化等方面进行研究改进,解决了射孔弹装配后穿透深度降低的问题,使射孔孔道在低渗储层有效长度增加;在复合射孔基础上增加二级火药,使火药燃烧产生的压力峰值时间延长,增强了对射孔孔道气体压裂效果;采用合理的负压差,依靠储层能量进行返排冲洗孔道,将孔道内残渣带出,达到降低射孔孔道污染的目的;针对压裂储层进行定方位射孔,使射孔孔道与最大主应力方向一致,从而降低启动压力和施工压力,消除了扭曲摩阻的影响,达到提高压裂效果的目的。深穿透射孔技术、多脉冲复合射孔技术、负压射孔工艺、定方位射孔工艺的广泛应用,为提高复杂储层采收率提供了技术支持。  相似文献   

2.
目前,油田钻通油气层后大部分采用下套管射孔完井进行油气开采,其目的是射穿套管、水泥层和地层内一定的深度,建立井筒与目的层之间的通道,进行试油或求产。射孔作为石油勘探开发中的重要环节,不仅关系到油气井的产能,而且还会对后续增产改造措施的效果产生重大影响。常规射孔孔眼的方向是随机的,因此无法满足一些特殊情况对射孔施工的要求,而定方位射孔技术是一种可以进行井下有方向性射孔的新型射孔工艺技术,其利用油管输送射孔管柱的方式,在起爆器与深度短接之间接入一定方位短接,通过测量定方位短接上方位键的方位来确定射孔弹穿孔的方位。定方位射孔技术应用于需压裂完井的井时,通过实现最大主应力方向的射孔,可有效降低地层破裂压力和地面施工压力,提高压裂效果。对于施工井附近存在断层需避开、地层存在天然裂缝希望与射孔孔眼沟通等特殊情况时,该技术均可成为有效的辅助手段。  相似文献   

3.
利用大型真三轴压裂模拟试验系统,通过模拟地层条件,监测压裂过程及其压力情况,观察裂缝的起裂及其延伸形态,进行射孔方式对压裂压力及裂缝形态的影响研究。研究结果表明,在地应力的大小和分布确定的情况下,破裂压力随着射孔角度的增大而升高,随着射孔排数的增加而降低。为有效降低地层破裂压力、提高压裂成功率及效果,射孔方位应选择0°方向,射孔密度在套管强度容许的前提下越大越好;单排射孔形成的裂缝形态较为简单,多排射孔形成的裂缝形态较为复杂,裂缝条数增加且形态各异。  相似文献   

4.
低渗储层采用定向井水力压裂是油气田增储上产和降本增效的重要措施和手段。射孔是压裂前打开储层的首要工序,射孔质量好坏直接影响定向井产能的发挥程度。为了降低储层起裂压力、减少砂堵风险,需要进行定向井压裂射孔方位优化。考虑原地应力、套管水泥环诱导应力、射孔孔眼诱导应力、井筒注液诱导应力和流体渗流诱导应力综合叠加,基于张性破坏准则,建立了基于最低裂缝起裂压力(FIP)的定向井压裂射孔方位优化模型;并进一步通过室内物理模拟,验证了模型的可靠性与合理性。模拟结果表明,FIP在360°射孔方位内周期性变化,存在两个最小和最大FIP点,并且随着井筒方位角的增加而增加,最小FIP逐渐增加,最大FIP逐渐减小;不同井斜角和方位角的最小FIP对应的射孔方向相差较大,斜井的最佳射孔方向应同时考虑井斜角和方位角的综合影响;水平主应力差和施工排量等因素对确定最佳射孔方位影响不大;并且在SXM气田X井进行了现场应用,优化的最佳射孔方向角为20°和205°,其对应的最小起裂压力为45.5 MPa。从而降低施工难度,为低渗储层射孔方位优化技术提供借鉴。  相似文献   

5.
定面射孔是致密油水力压裂改造的一种新型完井措施。利用大尺寸真三轴水力压裂实验系统开展了300 mm×300mm×300 mm立方体试样定面射孔压裂物模试验,结合有限元三维应力分析,研究了定面射孔相位角对水力压裂初始裂缝形态的影响机制。研究结果表明:定面射孔各射孔道之间的应力干扰改变了近井筒应力分布格局,导致沿定面射孔方向水力裂缝呈倾斜状及迂曲状扩展,背离射孔方向裂缝形态为近垂直状形态。随射孔相位角减小,孔道间应力干扰增大、裂缝起裂压力提高,各射孔均产生破裂进而形成横向倾斜压裂平面。利用定面射孔技术可控制压裂初始裂缝呈非对称、非规则扩展形态,增加近井筒水力裂缝的复杂性。  相似文献   

6.
基于线弹性岩石力学和定向射孔增产理论,提出了利用定向射孔诱导地层形成复杂体积裂缝的增产设计思路。通过大型真三轴水力压裂物理模拟实验对其压裂机理进行了研究,分析了射孔方位、水平地应力差、射孔深度等对破裂压力以及裂缝扩展形态的影响。结果表明:定向射孔方位角和水平地应力差对破裂压力的影响最为明显;并且控制着裂缝转向半径。随着射孔方位角的增大,破裂压力逐渐升高;随着射孔深度的增加,破裂压力逐渐降低;同时存在一个最佳射孔方位角范围,在此范围内可以诱导地层产生"S"型、"X"型等复杂裂缝形态。研究成果可为定向射孔压裂施工参数优选提供理论支撑。  相似文献   

7.
螺旋射孔条件下地层破裂压力的数值模拟研究   总被引:4,自引:0,他引:4  
水力压裂技术已经在低渗地层的石油天然气开采中得到广泛的应用,螺旋射孔是该技术中的常用措施,在此条件下地层的破裂压力是影响施工成功率和效果的重要因素之一.采用三维有限元方法对螺旋射孔条件下地层的破裂压力进行了研究,建立了套管完井(考虑水泥环及套管的存在)情况下井筒及地层的三维计算模型,首先计算和分析了定向射孔时不同的射孔密度和射孔方向角对地层的破裂压力的影响,与前人的实验结论进行了比较,在此基础上,进行了螺旋射孔条件下不同射孔方位角、相位角以及射孔密度对地层破裂压力的影响的研究,通过数值模拟的结果,给出了螺旋射孔对地层破裂压力的影响规律,可作为进一步研究螺旋射孔条件下的裂缝扩展规律的基础,同时对压裂设计和实际压裂施工中螺旋射孔参数的选取给出了具体的建议.  相似文献   

8.
胡延超 《科学技术与工程》2012,12(19):4620-4624,4633
油气井开采过程中有的出砂问题十分严重。不仅会缩短油井的寿命、磨蚀地面及井下设备、造成桥堵或井眼堵塞,还会降低油井的产量严重时甚至会迫使油气井停产,严重影响了油田的正常生产。为保证油气井的开发进度及效果,必须控制出砂。出砂受到各种综合因素的影响,如何准确预测出砂并有效地加以预防是延长油气井生产年限和保证良好经济效益的关键所在。因此,有效地解决出砂问题是保证油气井开发效果的重要举措。定方位射孔沿着最大主应力方位进行射孔,从而避开了井筒内易出砂的方向,有效地防止出砂现象。由此可见,研究定方位射孔与出砂的关系有着十分重大的意义。分析了出砂的各种影响因素,以降低破裂压力和防止出砂为研究的出发点,开展定方位射孔对破裂压力和出砂的影响分析。通过对井下岩石和射孔孔道的应力分布的研究,建立井下破裂压力和出砂临界压差的计算模型。结论表明对于定方位射孔,最佳的射孔方位为沿着最大水平主应力方位。  相似文献   

9.
水力射孔对地层破裂压力的影响研究   总被引:5,自引:0,他引:5  
水力射孔辅助定向压裂可有效提高低渗透油田压裂效率,明显改善压裂效果。建立了包含地层-水泥环-套管的水力射孔井的三维力学模型,运用有限元数值模拟方法结合弹性力学理论和岩石的破裂机理,分析了水力射孔参数对地层破裂压力的影响。研究结果表明,沿着最大水平地应力方向进行交错布孔、选择射孔密度为4m^-1、增加射孔深度可以有效降低地层破裂压力。研究结果可为水力射孔辅助定向压裂工艺提供参数优选的依据。  相似文献   

10.
电缆桥塞射孔、压裂联作技术是根据地层特点,优化射孔参数,采用井口防喷系统注脂建立压力平衡使用电缆输送的方式将射孔仪器串下至目的层,先坐封桥塞,然后上提电缆进行分簇射孔;采用水力分段压裂技术,提高工艺成功率和压后效果,具有施工安全可靠,射孔深度精确、分级压裂改造效果好、施工成本低等技术特点。采用该施工技术已在桩23断块应用推广应用了13口井,总计51个层采用该施工工艺,取得了良好的开发效果。  相似文献   

11.
射孔对井眼围岩应力场及破裂压力影响规律   总被引:3,自引:0,他引:3  
 射孔在一定程度上可以有效地降低地层破裂压力,避免裂缝扭曲和多裂缝的不利现象;射孔参数的改变会导致井壁围岩应力场及破裂压力的改变,进而影响压裂施工和压后产能.加强射孔井井壁围岩应力场的动态演化规律研究,对指导水力压裂施工、井壁稳定性、储层改造等具有重要的意义.利用ABAQUS有限元计算软件建立套管-水泥环-地层的三维数值模型,在考虑流固耦合效应和动态效应的基础上,运用单一变量理论对不同的射孔密度、射孔长度、射孔方位角等射孔参数进行模拟分析,得到井壁围岩应力分布及水力压裂破裂压力的定性认识并给出最优的射孔参数.研究结果可为压裂井射孔工艺技术优化设计提供一定的理论指导.  相似文献   

12.
水力射孔参数对起裂压力影响的实验研究   总被引:5,自引:0,他引:5  
采用真三轴实验架,对岩样施加三轴应力,通过改变岩样中的射孔深度、射孔直径、射孔轴线和最大水平应力之间的夹角α等参数,考察了不同射孔参数条件下的起裂压力变化规律。结果表明,起裂压力随射孔深度和直径的增加而降低,随夹角α的增加而增加。实验结果可为水力射孔及压裂的现场施工提供参考。  相似文献   

13.
地应力及射孔参数对水力压裂影响的研究进展   总被引:5,自引:0,他引:5  
介绍了国内外近年来地应力及射孔参数对水力压裂影响方面的理论和实验研究进展,主要包括任意方位和井斜角下井眼壁面地应力分布、地应力与裂缝走向的关系、射孔方位及间距对裂缝起裂及发展的影响、其他参数(压裂液粘度、排量等)对压裂效果的影响等研究成果,指出了目前研究中存在的不足,并对未来研究方向进行了分析与展望。  相似文献   

14.
水力射孔对地层破裂压力的影响研究   总被引:6,自引:0,他引:6  
水力射孔辅助定向压裂可有效提高低渗透油田压裂效率,明显改善压裂效果.建立了包含地层水泥环套管的水力射孔井的三维力学模型,运用有限元数值模拟方法结合弹性力学理论和岩石的破裂机理,分析了水力射孔参数对地层破裂压力的影响.研究结果表明,沿着最大水平地应力方向进行交错布孔、选择射孔密度为4 m-1、增加射孔深度可以有效降低地层破裂压力.研究结果可为水力射孔辅助定向压裂工艺提供参数优选的依据.  相似文献   

15.
通过大型真三轴模拟试验,研究了井斜角,井眼方位角、射孔方式对斜井压裂裂缝起裂压力、起裂位置及裂缝延伸规律的影响,得到了不同参数条件下裂缝起裂和延伸的直观认识。探索通过定向射孔形成一条平整大裂缝的途径,从而降低水力压裂地层的破裂压力,改善裂缝形态,提高压裂成功率,为优化斜井地层射孔方案及水力压裂设计提供依据。实验结果对于提高斜井水力压裂技术水平,改善压裂增产效果具有重要作用。  相似文献   

16.
采用真三轴实验架,对岩样施加三轴应力,通过改变岩样中的射孔深度、射孔直径、射孔轴线和最大水平应力之间的夹角α等参数,考察了不同射孔参数条件下的起裂压力变化规律.结果表明,起裂压力随射孔深度和直径的增加而降低,随夹角α的增加而增加.实验结果可为水力射孔及压裂的现场施工提供参考.  相似文献   

17.
为解决致密、页岩储层开发中常规螺旋分布炮弹射孔+体积压裂改造过程中起裂压力高、易沟通底层或盖层形成无效缝网的问题,结合连续油管水力喷砂射孔技术,提出了连续油管自适应定向喷砂射孔填砂分段一体化压裂改造工艺,研发了配套水平井自适应定向装置,并应用于玛湖致密油Ma1井的压裂改造,取得了较好改造效果。结果表明:①一定角度的定向射孔可以诱导水力裂缝沿有益方向延展,并形成复杂缝网,在其他因素不变的情况下,射孔方位及射孔孔深可以共同影响裂缝转向半径进而控制有效复杂缝网体积;②自主研发水平井自适应定向装置在水平段通过钢球重力及连续油管泵注实现自主定位,并可实现一次入井多次定位目标,Ma1井中多次定方位喷射作业中未发生故障,适用性强,可靠性高;③全过程油管内高压射流可以实现孔内增压、冲蚀孔眼与负压携液三种作用叠加,其可降低地层破裂压力、增加孔深、增大转向半径同时降低泵注设备压力,可对致密油水平井定向射流诱导压裂缝网形成起正向促进作用;④在玛湖Ma1井现场实施,比常规射孔降低起裂压力26%,日均产量平均最高提高78.4%。结论认为,通过水力喷射定向射孔有效腔体起裂压力;定向水射流诱导裂缝延展,可有效避免致密油水平井压裂中不当射孔将裂缝快速诱导至底层或盖层,形成无效缝网的难题;水力喷射诱导形成更为复杂的缝网形成提高单井产量,该技术可为页岩、致密油气资源规模化开发提供一种新的技术思路。  相似文献   

18.
介绍了国内外近年来地应力及射孔参数对水力压裂影响方面的理论和实验研究进展,主要包括任意方位和井斜角下井眼壁面地应力分布、地应力与裂缝走向的关系、射孔方位及间距对裂缝起裂及发展的影响、其他参数(压裂液粘度、排量等)对压裂效果的影响等研究成果,指出了目前研究中存在的不足,并对未来研究方向进行了分析与展望。  相似文献   

19.
对增加油气产量的射孔-高能气体压裂复合技术进行了详细的研究。重点对射孔-高能气体压裂复合器的设计原理进行了深入的探讨,其中包括枪管的耐压设计,枪身螺纹牙强度的设计,枪身内火药燃烧速度与压力范围及温度的定量关系,射孔后火药燃烧时的气体流速,射孔枪身内火药燃烧气体对射孔孔眼的冲刷作用及射孔枪身内火药燃烧气体射流的高能气体压裂作用。同时对枪身内火药装药的设计及现场施工工艺也进行了一定的研究。在延长油矿360m井深做射孔-高能气体压裂的现场试验结果表明,该技术操作简便,成本低,综合处理效果好,有广阔的应用前景。  相似文献   

20.
采用大型(试件尺寸:300 mm×300 mm×300 mm)真三轴水力压裂物理模拟实验系统,研究了定向射孔水力压裂人工水力裂缝起裂和形态的影响因素。研究结果表明:定向射孔方位角和水平地应力差对定向射孔水力压裂人工水力裂缝的起裂和形态影响巨大。定向射孔水力压裂形成的人工水力裂缝可能不是理想的平直双翼裂缝,而是双翼弯曲裂缝;在水平应力差和定向射孔方位角较大的情况下,容易形成由定向射孔方向和最大水平地应力方向多点同时起裂的非对称多裂缝系统或穿过微环面的双翼裂缝。提高原场地应力测量的精度和定向射孔的定向精度,将定向射孔方位角控制在较小角度,有利于避免产生形态复杂的人工水力裂缝,降低压裂施工难度和砂堵风险,改进压裂增产效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号