首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为改善某平头卡车气动特性,降低风阻,通过卡车整车风洞试验研究不同部件对阻力系数的贡献,发现导流罩、领口板、后视镜、侧裙板对阻力系数的贡献很大. 根据空气动力学原理对导流罩等对阻力系数贡献大的部件进行气动减阻优化设计,并通过试验对减阻效果进行验证. 通过后视镜与导流罩的改型设计,改善卡车前端流场;对货箱尾部导流片进行参数组合设计,改善卡车尾部流场;得到各部件减阻效果较好的组合方案. 风洞试验结果表明,经过气动减阻设计,卡车车身气动性能得到明显改善,相比于初始模型,最佳气动性能组合方案的减阻效果约为7%.  相似文献   

2.
汽车空气动力学性能是车身设计中需要着重考虑的方面,针对某国产快背式轿车的简化模型,应用计算流体力学原理与方法,研究了轿车尾部气动附件对于快背式轿车气动阻力系数的影响.采用三棱柱半结构化网格和Realizable k-ωSST模型,对不同尺寸的顶部及侧部扰流器的外流场进行数值模拟,得到不同情况下该车的气动阻力系数、表面压力分布等气动特性.对比分析了各种方案的流动特性及阻力系数.结果表明:加装不同尺寸的扰流器,通过适当的匹配与优化,可以改善轿车的气动特性,降低气动阻力.  相似文献   

3.
针对大学生方程式赛车外形的设计要求及空气动力学套件的结构特点,采用ANSYS软件对赛车流场进行分析并优化了动力学套件结构。首先根据赛车整车外形及空气动力学套件各个部分,如前翼、侧翼及尾翼的设计参数建立CATIA数学模型,再利用ANSYS对其空气动力学套件各部分及整车进行流场分析,最后用分析结果来优化原设计参数,使赛车整体空气动力学性能达到较好的水平。通过不同车速仿真分析表明,车速在30m/s时,优化后的空气动力学套件能使整车的下压力由原来的40N提高到1 590N,而前轮气动阻力能减少约41.6%,表明赛车在高速行驶过程中具有更为良好的操控性能和空气动力学特性。  相似文献   

4.
MIRA模型组尾部造型风洞试验研究   总被引:3,自引:0,他引:3  
汽车尾涡是整车气动阻力主要来源之一,而汽车尾涡直接受尾部造型的影响.因此,研究车身尾部造型对气动阻力的优化具有重要意义.以MIRA标准模型组为研究对象,通过风洞试验,运用表面压强测量技术和粒子图像测速(PIV)技术,得到MIRA模型组各模型的阻力系数以及车身纵对称面表面压强分布和尾部速度流场,并对此进行了定性、定量分析,获得了模型组中各模型阻力系数变化与车身尾部造型的关系.试验结果表明,在模型组中,斜背的阻力系数最小,阶梯背较大,直背最大,且这3种模型的尾部负压区、尾涡涡核距车身距离、尾涡扩散范围依次呈现增大趋势.  相似文献   

5.
车轮宽度对轿车风阻的影响   总被引:3,自引:2,他引:1  
针对某三厢轿车,采用计算流体动力学(CFD)数值计算方法,研究车轮宽度对整车气动性能的影响.通过综合分析不同宽度孤立车轮周围的流场结构变化及具有不同宽度车轮的整车周围流场的结构特性,得到结论:车轮宽度每减小5%,单车轮模型气动阻力约减小9.2%,整车模型气动阻力约减小2%.这是因为减小车轮宽度可以减小车轮两侧的气流分离,缩小尾部涡流区域,降低车轮及汽车尾部湍流强度,从而有助于降低车轮及整车气动阻力.  相似文献   

6.
为探索车身非光滑表面特征参数的优化设计方法,在MIRA阶梯背模型尾部分别布置凹坑型、凸包型和沟槽型非光滑表面,进行计算仿真和风洞模型试验对比分析不同非光滑单元的减阻效果。以非光滑单元体间距与高度为设计变量,以模型气动阻力系数为优化目标,采用拉丁超抽样方法进行样本设计,建立Kringing近似模型并检验拟合精度,运用NSGA-II遗传优化算法分别对凹坑型、凸包型和沟槽型非光滑表面特征参数进行优化。对比优化前后流场参数,分析车身非光滑表面减阻的机理。仿真结果和风洞试验数据表明优化后的凹坑、凸包及沟槽型非光滑表面模型的气动阻力均进一步减小,减阻率分别达到6.92%、4.03%、4.24%,减阻效果明显。  相似文献   

7.
提出一种空间形变技术与神经网络近似技术及多学科可行性方法相结合的多学科设计优化方法,基于此方法对轿车简化模型进行多学科设计优化。该方法使用逐次递归近似技术与空间缩放技术,使得收敛空间逐步减小,近似精度逐步提高,利用此高精度的数学代理模型替代整车碰撞学科与NVH学科的有限元模型,最后,基于此代理模型进行车身多学科设计优化,使整车耐撞性得到提高,改善了车身的一阶振动特性,减轻了整车质量。  相似文献   

8.
利用CATIA软件建立爱丽舍轿车车身的三维模型,在ANSYSWorkbench软件中建立其有限元模型。导入fluent软件中,采用Realizable志_£湍流模型,对轿车车身外流场进行数值模拟,得出其风阻系数和升力系数,并根据数值模拟的结果对该款车的外部流场的空气动力学特性进行分析。在此基础上对该车车身外形进行优化设计,减小了风阻系数和升力系数,同时也减弱了轿车尾部的涡流运动,获得较好的空气动力学特性。  相似文献   

9.
通过建立18个参数的参数化模型,并开发了基于遗传算法的全局优化方法,展开带内流的车身气动优化,获得了气动阻力系数为0.261的低阻优化外形.比较最优车身的仿真和试验结果发现,气动阻力系数仅相差4%,表面压力系数和不同截面速度分布趋势相同、量值相差较小,表明所采用数值仿真方法是正确、可行的.利用本征正交分解对车身尾部截面流场进行能量分解发现,前9阶模态占总能量的54.5%;能量占比最高的1阶模态呈现出尾部拖曳涡的形态,并且拖曳涡的涡核位置不随时间变化而变化.建立了带内流的全局优化方法,获得了经试验验证的带内流低阻车身,为相关产品开发提供借鉴方法和外形参考.  相似文献   

10.
为了便于修改和调整轿车整车的有限元模型,提高有限元模型生成速度,对轿车车身和车架的强度和刚度进行有限元分析。应用参数化曲面造型技术、参数化变量技术实现整车的映射网格自动剖分,应用薄壳单元和厚壳单元模拟车身和车架,建立了全板壳单元轿车车身骨架有限元计算模型。采用映射网格单元来分析计算,优化处理存储数据,使得车身、车架变形和应力分布的分析计算速度更快、精度更高,并且获得更好的分析结果。在弯曲、扭转工况下对轿车车身进行强度、刚度分析,计算出变形和应力最大部位,并依据最大应力区,提出改进方案,降低了最大应力。  相似文献   

11.
汽车在高速行驶(速度超过100 km/h)时,气动噪声对车内噪声环境影响起主导作用.因此,对车外噪声源的控制显得尤为重要.采用试验的方法,研究了后视镜的镜臂不同长度参数对车内噪声环境影响的变化规律,推导出后视镜镜臂参数与车内声能量、语言清晰度呈对数变化规律,且响度呈现出非线性变化规律,得到了后视镜镜臂长度参数控制在40...  相似文献   

12.
受内部空间约束的车身气动优化   总被引:3,自引:3,他引:0  
把分步遗传算法和以车辆人机工程学为基础设计的车身内部空间约束算子相结合,对车身进行受内部空间约束的气动优化,得到满足不同结构和尺寸的空间约束的三维无轮优化车身.优化车身的气动阻力系数CD值在0.070~0.090之间,气动性能较优.其中一款CD值为0.073的凸头车型优化车身和一款CD值为0.086的凹头车型优化车身可以满足由长前舱、大乘员舱和高后舱构成的内部空间约束条件的要求.内部空间约束的尺寸越小,结构越简单,优化结果越佳.造型越复杂的车身受到空间约束的影响越显著.  相似文献   

13.
CFD(计算流体力学)软件由于其经济性在汽车动力学上得到了广泛的应用,其方法对于预测和改进汽车的气动性能,以及对于指导汽车的产品设计都具有重要的意义。利用ANSYS ICEM对汽车外流场进行二维建模并对其进行网格划分,基于ANSYS FLUENT对外流场进行数值模拟,得出其压力云图、速度云图和速度矢量图。从直观上对汽车外流场的气流情况有了了解,通过数值模拟的数据对汽车外流场的实际情况进行分析,为优化汽车的气动性能提供了理论依据。  相似文献   

14.
针对目前汽车气动减阻中基于工程师经验的试凑法所存在的盲目性和低效率,以及气动优化设计中车身曲面难于参数化等问题,将自由变形方法引入汽车气动减阻优化设计中,为减阻优化设计提供一种快速、有效的参数化方法.文中以外形简单的Ahmed模型为研究对象,根据正交试验设计构建样本空间,采用FFD方法对各样本点模型进行参数化,通过CFD仿真获得各样本的气动阻力系数;建立3种常用的近似模型,选择可信度最高的RBF模型构建近似模型,采用多岛遗传算法求解近似模型的最优值,根据优化结果重新构建最优模型并采用CFD计算其气动阻力系数.计算结果显示优化后的Ahmed模型气动阻力系数减少了51.96%.   相似文献   

15.
以大学生方程式赛车为研究对象,采用横摆模型法对不同侧风下的赛车气动特性进行了CFD仿真和试验研究,得到了相应的气动力系数,并对不同侧风下流场中速度以及压力的分布进行了分析,探究了气动力系数和尾部流场的差异.结果表明,赛车的阻力系数和侧向力系数随横摆角的增大而增大,而升力系数并不随横摆角线性变化.赛车的下压力主要由前后翼提供,随着横摆角的增大,后翼所提供的下压力逐渐减小,而底板所提供的下压力则逐渐增大.车身所提供的阻力随横摆角的变化更为敏感.不同横摆角下,赛车尾部的涡流分布存在较大差异.   相似文献   

16.
由空气动力学套件产生的负升力对提高大学生方程式赛车的赛道表现有着重要作用,赛车尾翼是产生负升力的主要部件之一。使用有限元方法(computational fluid dynamics)对大学生方程式赛车尾翼的负升力特性进行研究。结果表明,在一定范围内尾翼产生的负升力数值随主翼攻角的增大而增大;大学生方程式整车流场中影响尾翼负升力的外界因素主要是车身遮挡物与前翼下游上升气流,尾翼的最大负升力损失达到40%;对尾翼分区域设计不同主翼攻角值有效提升了赛车尾翼产生负升力的能力。  相似文献   

17.
基于有限元-无限元理论,建立某型车辆的有限元模型,并对车辆近场监测点、远程监测面及无限元边界面进行设置,利用直接频响方法对头车、中间车及尾车的关键区域在不同频率下的声场特性进行分析。计算结果表面:头车和尾车区域在低频区段时车体顶部平滑区域的声辐射较小,在车体鼻尖及其下方的转向架区域的声压级较大,其中尾车后方区域内的相比头车的声压级水平和声辐射范围偏大,存在明显的流场影响,但在高频区段时其整体声压级均匀且水平较低。中间车区域在低频区段时受电弓区域的声压级水平很高,尤其在碳滑板和底架处尤为明显,其次在转向架区域的声辐射能力也较大,随着频率的提升,其能量也有显著的衰减。研究结果对高速列车的气动声学设计具有一定的参考价值。  相似文献   

18.
以MIRA车体气动性能的风洞试验数据为基础,对采用大涡模拟方法解算非定常特征显著且具有大分离流动结构的近地钝体外部绕流场所涉及的迭代步数、时间步长、网格方案等影响因素开展研究.采用对比分析方法对3种亚格子湍流模型的计算准确性进行研究.提出适用于三厢车型的大涡模拟数值仿真策略.  相似文献   

19.
为了得到底部结构对列车流场及气动阻力优化规律的影响,通过计算流体力学和正交试验设计分析的方法,研究真实复杂车体的底部流动和尾迹特征,得到了复杂车体气动阻力优化规律.结果表明,尾车鼻尖静压系数在底部结构影响下降低了0.06,尾车流动分离提前,两反对称尾涡核间横向距离增大,尾涡间夹角增大.头型概念设计时的拓扑简化车体模型可以作为真实复杂车体的气动阻力优化设计模型,但考虑底部结构使得头车参数优化的极差值减小、尾车参数的优化极差值增大.头车阻力优化重点为转向架周边结构,尾车阻力优化对流线型长度参数更加敏感.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号