首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
为研究钨合金球形破片对DFRP靶板的侵彻规律,利用弹道枪动加载设备,研究了两种质量的钨合金球形破片对不同厚度DFRP靶板的侵彻. 根据弹道试验结果,获得了弹道极限速度和靶板面密度的关系,并利用量纲分析法得到了弹道极限速度的经验关系式,其预测值与试验结果吻合较好;分析了DFRP靶板在钨合金球体高速撞击下的主要破坏模式及细观吸能机制,并且获得靶板面密度和钨合金球形破片的初始撞击速度对弹道吸能的影响规律.   相似文献   

2.
研究钨合金破片对有限厚钢板和铝板的穿甲效应. 采用12.7 mm滑膛弹道枪,57.5 mm/14.5 mm二级轻气炮以及通靶速度测试装置组成实验系统进行3g(直径7 mm)球形钨合金破片对9.64,11.78,14.81,15.89和17.9 mm厚Q235A钢板和10.16,20.38 mm厚2A12铝板的穿甲实验,通过实验获得球形钨合金破片对不同厚度金属板的弹道极限以及对Q235A钢板的极限贯穿厚度;采用扫描电镜(SEM)对实验后回收破片进行了微观结构特征观察,分析了不同弹靶作用条件下钨合金破片的失效机理. 进行了与实验相同弹靶结构的数值模拟研究,通过数值模拟研究了破片对金属板侵彻过程中的阻力变化特征. 结果表明,钢板较高的密度是存在极限贯穿厚度的主要原因.  相似文献   

3.
活性破片对钢板侵彻性能的实验研究   总被引:1,自引:0,他引:1  
进行了弹道枪发射实验,研究了活性破片对钢板侵彻性能和毁伤效应。测量破片穿透不同厚度钢板的临界速度,采用高速摄影仪观察破片侵彻钢板过程和反应现象。实验结果表明,活性破片在497~1374 m/s速度范围内,撞击钢板时发生了反应,并伴随有强烈的燃烧、爆炸现象。在战斗部设计关心的1 500~2 200 m/s范围内,活性破片对典型的6 mm厚等效钢板具有足够的侵彻能力;且穿孔直径大于惰性钢破片。聚合物基体材料的强度低和撞靶反应是造成活性破片侵彻穿甲能力弱于钢破片的主要原因。活性材料强度和密度相对钢靶较低,导致撞击靶板过程中发生较大的镦粗变形以及侵靶过程中反应对靶孔产生径向膨胀效应使穿孔孔径增加。  相似文献   

4.
使用数值计算与试验相结合的方法,首先利用非线性显示动力分析有限元程序LS-NYNA,建立了钢破片侵彻靶板的有限元模型,然后设计弹道极限速度(V50)试验,得到大量的试验数据.通过对比模型与试验结果,验证模型计算的准确性.最后利用模型计算结果拟合了弹道极限速度经验公式,并验证了现有的几种不同材料靶板等效厚度公式的准确性.  相似文献   

5.
为了提高小口径普通钢芯弹和穿甲燃烧弹侵彻均质钢靶板的仿真分析精度,分析了接触力罚函数算法的接触刚度参数和接触摩擦系数对弹道极限速度计算值的影响,分析了通过不同的并行计算系统得到的弹道极限速度计算值的差异及其统计规律。研究结果表明:多部件间的接触力罚函数的接触刚度参数分别设置与优化方法可以提高弹道极限速度值的计算精度;接触摩擦系数的不同设置值对穿甲燃烧弹侵彻较厚靶板的弹道极限速度计算值有显著影响,需探索多部件间的接触摩擦系数的准确定义方法;由于分区并行计算过程中多个区域的数据交换及参与计算的顺序的随机变化会导致计算结果的不一致,并行计算的弹道极限速度值存在离散性,需在同一入射速度下进行多次重复计算,并基于统计分析确定可靠的弹道极限速度值。  相似文献   

6.
为研究铀钛破片的冲击侵彻特性,基于弹道驱动试验平台,测试了钛质量分数为0.5%~1.0%的5种典型钛合金破片对10 mmA3钢板的侵彻性能,获得了5种不同质量分数钛的铀钛合金破片对钢靶板侵彻前后的速度、质量、动能变化数据. 实验结果表明,铀钛合金破片侵彻钢靶时发出明亮火光,靶板的破坏形式以冲塞为主,并伴随有延性扩孔现象. 此外,钛质量分数为0.9%的破片动能损失最小,钛质量分数为0.75%的破片对靶板造成的剪切破坏最大.  相似文献   

7.
采用海37 mm弹道炮发射次口径钨合金和钨纤维增强非晶复合长杆弹进行了高速侵彻装甲钢靶试验,并借助三维非线性动力有限元程序ANSYS LS-DYNA对1.0~2.6 km/s速度条件下两种长杆弹侵彻半无限厚装甲钢靶问题进行了数值模拟,分析了弹体材料和速度对其侵彻性能的影响,并对其毁伤机理进行了初步分析.实验与数值计算结果均表明钨纤维增强非晶复合长杆弹的侵彻性能优于钨合金长杆弹;实验侵彻过程中,钨纤维增强非晶复合长杆弹产生了自锐现象,而钨合金长杆弹则是形成了蘑菇头;数值模拟结果表明两种长杆弹的破坏模式随入射弹速的变化而变化.  相似文献   

8.
锆基非晶合金是极具发展潜力的含能结构材料,由其制备的破片侵彻不同材质装甲时,会表现出显著不同的毁伤效果.本研究中利用弹道枪发射装置,针对Zr77.1Cu13Ni9.9非晶合金破片,以1 200 m/s速度分别侵彻8 mm厚LY12铝合金和TC4钛合金屏蔽靶,结合高速摄影技术比较了破片碎裂形成碎片云并造成毁伤后效的过程;同时基于FEM/SPH自适应耦合法,再现了破片对两类屏蔽靶开坑、稳定侵彻、穿透等系列阶段,以及碎片云形成的复杂物理过程,揭示了其对后效靶的毁伤机理.结果表明,由于TC4钛合金相比LY12铝合金具有更高的强度,穿透TC4屏蔽靶所需的时间更长,且靶板内最大等效应力是后者的3倍左右;破片在侵彻TC4屏蔽靶时与靶板间发生了更强的相互作用,使得破片前端出现更大面积的高应变区域,由此导致破片发生了更严重的破碎并产生分布范围更大的碎片云,从而在后效靶上产生更大面积的损伤.  相似文献   

9.
针对基于量纲分析获得弹道极限速度计算模型函数基础上通过若干试验值拟合获得计算模型的方法,研究弹体侵彻靶体试验所获弹道极限速度试验值异常性的检验方法. 根据统计学原理,提出了特定置信水平下标准化残差值在标准正态分布置信区间落入度的弹道极限速度试验值检验方法;同时,进行了3.0,4.5,6.0,7.5,9.0,10.0g共6种质量35CrMnSi钢FSP弹体对4mm和5mm两种厚度典型高强度低合金(HSLA)钢板的侵彻试验,获得了12个弹道极限速度试验值,基于量纲分析及试验数据获得了相应的弹道极限速度计算模型;并以此模型为实例,根据95%置信水平下标准化残差值在(-1.96,1.96)区间落入度进行了弹道极限速度计算模型的检验和修正,研究结果表明所提方法可用于弹道极限速度试验值异常性的检验.   相似文献   

10.
本文是研究接触式双层靶板对平头弹的抗侵彻性能,实验发现接触式双层靶的弹道极限高于相同厚度的单层靶,认为提高其弹道极限的原因是发生较大的弯曲变形,需要耗散更多的能量,塞块增大靶板的有效厚度。以能量守恒定理及Chen和Li模型为理论基础,提出平头弹贯穿接触式双层金属靶后的剩余速度的计算公式。在穿甲过程中,考虑塞块对终点弹道性能产生的影响,对相关的平头弹穿甲Weldox 700 E系列钢靶的试验数据进行分析比较。  相似文献   

11.
破片侵彻纤维复合材料板的有限元数值模拟   总被引:1,自引:0,他引:1  
采用有限元方法对几种不同外形和材料的破片模拟弹垂直侵彻玻璃纤维增强复合材料层合板的动态响应过程进行了模拟分析,研究了靶板有限元模型网格尺度对抗破片侵彻特性模拟计算结果的影响,分析了靶板直径和边界约束条件等因素对复合材料板的抗破片特性的影响。对于厚度为4.0mm以上的较厚靶板,几种常用的13.4g钢质破片模拟弹的外形和材料的差异对侵彻能力影响较小。与已有文献中的实验结果的比较表明:当有限元网格尺度接近复合材料单层厚度时,计算结果的精度较好;当靶板直径大于一个与靶板材料波速相关的临界直径时,靶板直径、边界约束条件对破片模拟弹剩余速度的影响可忽略;完全固支条件的计算结果比简支或自由边界条件更接近于大尺寸靶板的计算结果。  相似文献   

12.
采用Autodyn动力学软件对大尺寸破片侵彻混凝土毁伤效应影响因素进行数值模拟研究,获得了侵彻速度、侵彻姿态、破片形状、破片材料等因素对混凝土毁伤效应影响特性. 研究结果表明,破片侵彻速度增大,侵深和侵孔直径逐渐增大,且直径趋于一定值;斜侵彻时,压缩–剪切耦合作用和边界效应可造成侵孔增大;当破片侵彻动能、形状相同时,钨破片综合毁伤效果优于4340钢、45#钢;圆柱体破片破孔能力最强,正方形破片侵深能力最强.   相似文献   

13.
为揭示球形破片侵彻带软质防护明胶靶标的作用过程和机理,对球形破片侵彻带软质防护的弹道明胶进行了仿真与试验研究.结果表明:在球形破片撞击带纤维软防护明胶靶标瞬间,明胶的凹陷速度有个迅速的上升过程,在此期间钢球速度迅速衰减,防护层的破坏主要是以剪切破坏为主;随着钢球速度的不断减小,防护层纤维的拉伸变形越来越明显,钢球的动能开始大量转化为防护层的弹性势能,防护层的破坏主要是以拉伸破坏为主;防护层在未被击穿情况下,仍有明显的"背凸"现象,在明胶内部产生了典型的压力波效应,距明胶前表面40 mm处峰值压力在3.53 MPa左右,仍可对人体器官造成一定损伤.  相似文献   

14.
活性破片引爆屏蔽装药机理研究   总被引:6,自引:5,他引:1  
采用弹道实验对活性破片引爆屏蔽装药作用行为进行研究,且与同质量钨合金破片引爆能力进行对比,并基于AUTODYN-2D平台对破片冲击起爆屏蔽装药行为展开数值模拟研究,通过数值模拟与实验结果的对比得到活性破片引爆屏蔽装药机理.结果表明,10g活性破片在1 287m/s以上碰撞速度下,能可靠引爆设有10mm厚LY12硬铝或6mm厚A3钢面板的注装B炸药,而同质量钨合金破片在1 527m/s碰撞速度下,只能造成屏蔽装药碎裂而不能将其引爆.活性破片撞击金属面板后,自身在装药内部发生的剧烈化学反应是其引爆装药的主控机制,这显著降低了破片引爆屏蔽装药所需的动能.  相似文献   

15.
对某型战斗部分别使用铝合金和钛合金壳体时破片穿甲能力进行了研究,发现破片相同时,钛合金壳体降低了其破片穿甲率。根据破片穿甲理论,提出对破片进行优化,提高其打击比动能,即提高破片存速并降低其打击面积的方法来解决钛合金壳体对破片穿甲率的影响,并通过数值模拟和靶场试验对其可行性进行研究。结果表明,优化后破片的极限穿深得到了提高,有效地解决了钛合金壳体对破片穿甲率影响的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号