首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
针对鄂西某鲕状赤铁矿进行悬浮焙烧研究,并采用振动样品磁强计、X射线衍射分析仪、穆斯堡尔谱仪分析还原温度、还原时间、氧化温度、颗粒粒度对焙烧物料磁性和物相组成的影响规律.结果表明:铁矿石经悬浮焙烧后磁性明显增强,且焙烧物料磁性与强磁性铁矿物的含量呈正比.当还原温度为550~650℃时,还原物料的磁化强度和比磁化率随还原温度的升高而升高,超过700℃后则随之降低.延长还原时间可提高还原物料的磁化强度和比磁化率.焙烧物料中γ-Fe2O3含量随氧化温度升高而增加,在氧化温度为350℃时物料中γ-Fe2O3的含量达到最大值.当焙烧物料颗粒粒度小于15μm时,颗粒的磁化强度和比磁化率随之降低,而剩磁和矫顽力则随之增加.  相似文献   

2.
对生物质磁化鲕状赤铁矿石进行研究,包括磁化温度、磁化时间、生物质用量以及赤铁矿石粒度对磁化效果的影响.在磁化温度为600℃,赤铁矿石与生物质的质量比为10:2的情况下,利用生物质热解产生的气体和焦油在30 min内可以完全磁化粒度为0.074 mm (>72.5%)的赤铁矿石,验证了生物质替代煤基还原剂进行磁化焙烧具有一定的可行性.此外,矿石粒度对磁化焙烧还原度的影响比较大,矿石粒度越大,完全磁化所需时间越长.根据生物质还原剂的特点,适当地减小矿石粒度可以有效改善赤铁矿石的磁化性能.  相似文献   

3.
磁化焙烧–弱磁选联合工艺是目前实现低品位难选铁矿高效铁资源富集利用的最有效工业化方案之一。菱铁矿(碳酸亚铁)和赤铁矿(三氧化二铁)是两种主要弱磁性难选含铁矿物,菱铁矿在常规工业化赤铁矿还原磁化焙烧条件下会生成弱磁性浮氏体,进而降低磁性物相转化率和最终弱磁选精矿铁元素收得率。对此,本文提出了菱铁矿流态化预氧化–低温还原的磁化焙烧高效物相转化方案,并以低品位陕西菱铁矿为样品进行了系统研究。研究发现,菱铁矿在快速预氧化过程中会生成弱磁性和强磁性三氧化二铁两种铁氧化物,其中强磁性三氧化二铁500–550℃还原焙烧产物除工艺目标物相强磁性四氧化三铁外,还有部分由不稳定四氧化三铁被进一步还原生成的弱磁性浮氏体。预氧化产物只有在更低温度还原焙烧才能实现目标四氧化三铁产物相的稳定存在,优化的菱铁矿流态化快速焙烧完全磁化转变工艺参数为610℃预氧化2.5 min再低温450℃还原焙烧5 min,菱铁矿经此条件磁化焙烧后磨矿弱磁选分离能够达到精矿铁含量62.0wt%、铁元素收得率88.36%的优良指标,相比常规直接还原焙烧铁元素收得率大幅提高34.33%,可以实现低品位难选菱铁矿的高效物相转化资源利用。本文提出的预氧化-低温还原焙烧方案也具有适用于菱铁矿–赤铁矿共伴生铁矿全范围含量比例共磁化焙烧的特点。  相似文献   

4.
张彩哲 《科技信息》2013,(24):382-382
鲕状赤铁矿选矿一直被认为是世界选矿难题。本文针对某地区难选鲕状赤铁矿进行了焙烧—弱磁选试验研究,在焙烧温度900℃,焙烧时间80分钟,矿煤比12,磨矿细度-0.074mm占85%,磁场强度为70KA/m条件下,经过一次精选,可获得品位63.57%,回收率85.98%的铁精矿。  相似文献   

5.
Fe2O3转变为Fe3O4粉末的微波碳热还原   总被引:1,自引:0,他引:1  
以活性炭为还原剂及以氩气为保护气,采用微波碳热还原的方法,将弱磁性的Fe2O3还原成强磁性的Fe3O4,并研究焙烧温度、保温时间以及SiO2粉末的加入对其还原焙烧成分及磁化效果的影响规律.结果表明:在配碳量一定的条件下,焙烧温度是微波碳热还原的关键因素,随着温度的升高,还原产物中Fe3O4的含量发生有规律的变化;650℃、保温5 min的条件下经微波还原后生成了纯Fe3O4粉末,其磁化率和还原度分别达到理论值2.33和11.11%;含SiO2的Fe2O3粉末在750℃以上进行微波还原,会生成大量的硅酸亚铁和氧化亚铁,导致Fe3O4含量降低,恶化还原焙烧指标,所以微波磁化焙烧的最佳温度应在570~650℃.  相似文献   

6.
矿粉粒度及反应温度对高磷鲕状赤铁矿制备碳化铁的影响   总被引:1,自引:0,他引:1  
为探索利用高磷鲕状赤铁矿作为炼钢原料的新途径,在CH4-H2气氛下对高磷鲕状赤铁矿制备碳化铁进行了实验研究,探讨了矿粉粒度对还原和碳化的影响。采用热重法、SEM-EDS和XRD分别对实验中试样还原失重过程、高磷鲕状赤铁矿矿相和碳化产物进行了分析。实验得到120~160目粒度矿粉的反应活化能最低,还原反应活化能为44.95kJ/mol,碳化阶段表观活化能为9.71kJ/mol。从反应速率的角度,利用高磷鲕状赤铁矿制备碳化铁的最佳温度为1 023K,矿粉的最佳粒度为120~160目,总体来讲,温度比矿粉粒度对高磷鲕状赤铁矿制备碳化铁反应速率的影响大。  相似文献   

7.
平黄山(鱼面)状贫赤铁矿曾采用强磁场温式磁选法,浮选法,选择性絮凝浮选法,低温还原焙烧磁选法进行裔集试验,虽然磨矿细度达到95%-325目,最终铁精矿含铁量均低于49%。本文介绍采用劣质煤为还原剂高温还原磁化焙烧阶段磁选法试验的结果,试验的焙烧温度为950℃,磨矿细度为91%-250目,最终铁精矿含铁量为63.2%,回收率74.2%。  相似文献   

8.
采用实验室间歇式悬浮态反应炉作为磁化焙烧装置,以高纯N2和H2的混合气体作为还原气体,考察450~700℃下某鞍山式赤铁矿预选粗精矿磁化焙烧—磁选的影响因素。研究结果表明:在气体流量为8 m3/h、反应温度为650℃、H2体积分数为40%及物料循环3次的条件下,焙烧物料经磁场强度80 k A/m的戴维斯磁选管分选后,可获得Fe质量分数为65.46%、回收率88.10%的优质铁精矿。  相似文献   

9.
通过原位观察的方法,研究了H2气氛、不同温度下高磷矿还原过程的矿相结构演变规律和温度对金属铁析出形态的影响。高磷矿的鲕状结构在还原过程中未被破坏掉;随着温度的提高,矿相结构的演变加快,温度较高时Fe发生明显偏聚,金属铁从赤铁矿相中加快析出。还原温度对高磷矿中金属铁的析出形态影响显著:在700℃时金属铁析出在矿石颗粒表面形成致密铁层;800℃时析出的金属铁形貌复杂化,铁层致密度下降,出现孔洞,同时有少量的短小铁晶须;900℃时铁晶须数量明显增多,同时伴随着大量多孔海绵铁的析出。因此,可以通过调节还原温度和时间,使得气基还原过程避免黏结失流,同时高效还原高磷矿。  相似文献   

10.
以氢气为还原剂,通过改变还原反应温度、还原反应时间、磁选条件对山西某贫赤铁矿进行还原-弱磁选实验。还原磁化矿采用弱磁磁选工艺,得到高品位铁精矿。采用光学显微镜、XRD、H2-TPR、元素分析(ICP)和化学分析等手段对原矿组成及矿石结构进行分析。结果表明:山西某贫赤铁矿是一种典型的低品位(28.63%)、极细粒、沉积型难选赤铁矿。通过实验得到的最佳工艺条件为:焙烧还原温度440℃,还原时间75min,气体总流速100L/h,H2体积分数50%(N2为平衡气),一段磨矿20min,磁场强度0.229T.采用此工艺可得到精矿铁品位,铁回收率分别达到50.45%,60.92%.氢气还原-弱磁选工艺为山西难选贫赤铁矿的开发利用提供了依据。  相似文献   

11.
基于煤基焙烧还原-磁选工艺,进行了宣龙式难选鲕状赤铁矿石提铁过程及其影响因素的实验研究.以铁精矿品位和铁回收率为评价指标,确定了适合于该类矿石的最佳工艺条件:焙烧还原温度为1 200℃,还原剂用量为30%,焙烧还原时间为60min,焙烧产物磁选前的磨矿细度为-45μm占96.19%,磁选的磁场强度为111kA.m-1.在该工艺条件下,可以使铁精矿品位达到92.53%,铁回收率达到90.78%.  相似文献   

12.
云南惠民铁矿微波磁化焙烧工艺   总被引:3,自引:0,他引:3  
基于云南惠民铁矿主要为细粒浸染结构、氧化矿的主要铁矿物为褐铁矿,以氧化矿为研究对象,采用微波磁化焙烧-弱磁选工艺分选铁矿石,考查微波焙烧温度、还原剂用量、磁选磁场强度对分选指标的影响。研究结果表明:在焙烧温度为800℃,还原剂用量为12%,还原时间为12 min,磁选磁场强度为119.37 kA/cm的条件下,获得铁精矿品位为59.31%,回收率为81.92%,证实微波磁化焙烧铁矿石的方法可行,为难选铁矿石的分选提供了一种新的思路。  相似文献   

13.
研究含硼磁铁矿配比对巴西赤铁矿球团生球质量、预热焙烧性能和成品球团冶金性能的影响。结果表明:配加30%和50%(质量分数)含硼磁铁矿后,生球的落下强度增加,爆裂温度显著提高;球团预热温度降低50℃左右,焙烧温度降低120℃以上;成品球团矿还原度从72.40%分别提高到87.95%和78.71%,低温还原粉化指数RDI+3.15从87.79%分别提高到97.38%和99.62%,还原膨胀率从36.25%分别降到12.50%和4.00%;焙烧性能得到提高的原因是Fe3O4氧化生成的新生Fe2O3晶体具有较大的活性,B2O3有利于含硼的镁铁橄榄石液相生成,这两者能够促进球团再结晶和晶粒长大;还原度提高的原因是B3+半径很小,易扩散进入Fe2O3晶格中,产生晶格畸变,使得Fe2O3易于还原;铁酸镁和含硼的镁铁橄榄石液相的生成,有利于还原膨胀和低温还原粉化性能的提高。  相似文献   

14.
镍红土矿加压浸出渣磁化焙烧-弱磁选铁精矿的研究   总被引:1,自引:0,他引:1  
以镍红土矿加压酸浸渣为原料(其主要成分是以赤铁矿为主的铁矿物),对其进行磁化焙烧-弱磁选铁精矿的实验研究,确定还原焙烧-弱磁选工艺的优化条件。研究结果表明该工艺的优化条件是:无烟煤质量分数为20%,焙烧温度为750℃,焙烧时间为60 min,冷却方式为水冷,弱磁选磁场强度为195 kA/m,在此最优条件下,铁品位和回收率分别为64%和94%,精矿中S质量分数为0.16%,达到了钢铁对铁精矿成分的要求。  相似文献   

15.
在相同还原焙烧条件和等量添加剂下,系统研究了煤基还原剂中的挥发分对鄂西高磷鲕状赤铁矿在直接还原焙烧过程中对含铁和磷矿物的影响.通过XRD及SEM分析对煤基中挥发分的作用机理进行初步阐述.研究结果表明,煤的挥发分有利于铁回收率的提高,对降低铁产品中磷不利.经过类高温干馏的两种煤种的原煤作为还原剂时,焙烧产品新生成脉石矿物不同,并且原矿中鲕绿泥石和石英等会与含铁矿物发生复杂的化学反应,原矿中含磷矿物大部分仍以氟磷灰石形式存在,但少部分含磷矿物仍会参与还原焙烧的反应.  相似文献   

16.
以湖北鄂西某高磷鲕状赤铁矿为研究对象,采用还原焙烧-弱磁选方法进行试验,并用黑曲霉对磁选后精矿进行微生物浸出脱磷研究.试验结果表明,正交实验得出各因素对精矿品位的影响顺序从大到小依次为焙烧温度、焙烧时间、还原剂比例、磨矿粒度.最佳焙烧-弱磁选条件为焙烧温度900℃、焙烧时间25 min、还原剂配比6%、磨矿粒度-0.074 mm95.08%,在此条件下获得精矿品位57.25%、回收率90.20%的较好的选别指标.黑曲霉对精矿中的磷元素具有较强的脱除能力,微生物浸出作用8d后,在较低的矿浆浓度下矿石的脱磷率为79.68%,矿石中的含磷量由0.85%降低到0.17%.该研究为微生物用于铁矿石的脱磷提供了理论依据.  相似文献   

17.
高铁赤泥中的铁含量较多,是一种潜在的铁矿资源.因此,研发创新性工艺和技术以实现赤泥中铁的回收利用和赤泥减量很有必要.针对拜耳法高铁赤泥,制定了悬浮磁化焙烧-弱磁选的工艺流程,并研究了焙烧温度、焙烧时间、还原气CO浓度和总气量对磁化焙烧效果的影响.结果表明,在最佳焙烧条件下,焙烧矿经过弱磁选别,可获得磁选精矿TFe品位为56.40%,回收率为88.46%的指标.通过对原料和焙烧产品的XRD分析、铁的化学物相分析、SEM-EDS分析和VSM分析可知,赤泥中的弱磁性的赤铁矿在磁化焙烧过程中被还原成了强磁性的磁铁矿.  相似文献   

18.
为研究鲕状赤铁矿和煤粉的混合球团矿经深度还原后铁颗粒的粒度和形貌特征,通过压块的方式模拟球团矿在高温下进行深度还原反应,并采用扫描电子显微镜(SEM)和工艺矿物学参数自动测试系统(BPMA)考察不同温度和时间下煤基球团矿经深度还原后金属铁颗粒的平均粒径、粒度分布和镜下形貌等特征变化。研究结果表明:随着还原温度升高或还原时间延长,铁颗粒粒径不断增大,且还原温度对铁颗粒长大的影响更显著;在不同还原条件下,粒度区间前20%中的铁颗粒数量占总体数量的60%~85%;铁颗粒的长大过程主要包括单个球形铁颗粒的析出与粗化,颗粒之间链接形成堆积铁颗粒集团并逐渐熔合均一化,最终生成稳定的大颗粒。  相似文献   

19.
针对鄂西高磷鲕状赤铁矿,采用煤基还原焙烧-磁选工艺制备直接还原铁,研究了还原剂用量、焙烧温度、焙烧时间、助熔剂等对还原焙烧效果的影响规律。研究结果表明:在焙烧温度为1 100℃,焙烧时间为50 min,还原剂用量为30%,助熔剂为碳酸钠和硫酸钠、用量分别为15%和30%时,磨矿磁选后获得直接还原铁的铁品位91.13%,铁的回收率78.87%,残留S含量0.03%,P含量0.09%,满足电炉炼钢原料要求。本文方法为同类型铁矿石的综合开发利用提供了充分的技术支持。  相似文献   

20.
为了研究碳酸钠对尼日利亚某高磷鲕状赤铁矿直接还原焙烧-磁选脱磷效果的影响,采用X射线衍射(XRD)和扫描电镜(SEM)研究了添加碳酸钠后直接还原焙烧的产物.结果表明,还原焙烧过程中添加碳酸钠后可以实现脱磷:碳酸钠的加入抑制了铁橄榄石的生成,阻断了磷进入金属铁的过程;使得鲕粒结构破坏,促进金属铁颗粒的聚集长大,有利于金属铁颗粒与脉石的解离;原矿中含磷矿物在焙烧过程中与碳酸钠反应生成可溶性的Na3PO4,在磨矿磁选过程中溶于水,使直接还原铁中磷的含量降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号