首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
微生物燃料电池技术发展及其应用前景   总被引:1,自引:0,他引:1  
微生物燃料电池可以借助微生物的催化作用直接将燃料(如有机酸,糖类等)的化学能转化为电能.某些类型的细菌具有将电子传递到细胞外并与外界电子受体接合的能力,可以用于构建微生物燃料电池.微生物燃料电池的研究集中于产电细菌、电极材料和电池反应器构型等方面,同时,微生物燃料电池在废水处理、生物修复等方面具有广阔的应用前景.  相似文献   

2.
微生物燃料电池在废水处理中的应用研究进展   总被引:1,自引:0,他引:1  
利用微生物燃料电池技术处理废水,在降解污染物的同时能够产生电能,是一种新型废水处理工艺,具有良好的研究开发价值.作者介绍了微生物燃料电池技术处理废水反应装置的构造和工作原理;概述了电极材料、微生物种类、电池内阻等因素对处理废水与产电性能的影响;总结了该工艺在化工、制药、食品加工、畜牧养殖、垃圾场渗滤液等有机废水和含氮废水中的应用研究现状及进展,并对今后的研究工作提出了建议.  相似文献   

3.
采用单室空气阴极微生物燃料电池处理肠衣废水,考察了其产电特性及废水处理效果.结果表明,实验条件下,微生物燃料电池能够在降解肠衣废水的同时产电.污水稀释比为1∶1到4∶1时,微生物燃料电池的产电性能和水处理效果较为理想,其输出电压可稳定维持在0.2V左右,COD处理效率可达83%以上,氨氮处理效率高于97%且处理较为彻底,污水中主要有机污染物蛋白质的去除率均可达75%以上.这些结果证明了微生物燃料电池降解肠衣废水并同步产电的可行性.  相似文献   

4.
微生物燃料电池在污水处理方面的应用研究进展   总被引:1,自引:1,他引:0  
近年来微生物燃料电池技术在国外接连取得突破性研究成果, 并迅速成为新概念废水处理的热点.介绍了微生物燃料电池技术的原理和特点, 系统综述了该项技术的研究进展, 重点总结了在微生物、介体与电极材料研究等方面的最新研究进展, 分析了存在的问题, 在此基础上指出微生物燃料电池技术研究的重点突破方向.  相似文献   

5.
随着能源危机的严重,新能源的开发与探索成为了人们关注的热点。其中微生物燃料电池作为生物质能的一个重要代表也获得了广泛的关注。通过使用硫酸铁铵和硫酸亚铁铵制备的磁流体来吸附微生物,使得微生物与电极接触更好,将微生物聚集在电极表面增大微生物的密度,增大电极的产电性能。选用开路电位法来研究微生物燃料电池的产电性能,是在无电场干扰的纯自然条件下对电池的产电性能的检测和表征,使得微生物能正常的进行生理代谢而不会受到伤害。研究的微生物燃料电池的开路电位高达1.44V,而且在检测的100min内比较稳定。  相似文献   

6.
通过恒电流法电沉积分别制备了氧化石墨烯/聚吡咯(GO/PPy)复合材料修饰碳毡(CF)阳极和还原氧化石墨烯/聚吡咯(r GO/PPy)复合材料修饰碳毡阳极.通过循环伏安法和交流阻抗法对电极特性进行考察.将其分别应用到微生物燃料电池中,对其产电性能进行研究.结果表明,相比r GO/PPy-CF电极,氧化石墨烯以掺杂方式加入到聚吡咯中,一步电聚合制备的GO/PPy-CF电极,其电极性能更为优异,且作为MFC阳极时,对电池的产电性能提升更大.该电极制备方法简单,无需使用强还原剂,是一种有效环保的MFC阳极制备方法.  相似文献   

7.
目的研究原水初始pH值、不同NaCl质量浓度和水力停留时间(HRT)对连续流双室微生物燃料电池的产电及污水处理效果的影响,使其产电及污水处理效果可以达到最好.方法试验以生活污水为研究对象,自行设计连续流双室微生物燃料电池处理工艺装置进行试验.结果在原水初始pH值为8、NaCl质量浓度为5 g/L和HRT为24 h时,连续流双室微生物燃料电池产电及污水处理效果可以达到最好.结论原水初始pH值、原水不同NaCl质量浓度和水力停留时间(HRT)对微生物燃料电池产电及污水处理效果的影响均较大.  相似文献   

8.
采用厦门本土产电菌希瓦氏菌(Shewanella xiamenensis BC01),在染料脱色的刺激产电条件下,比较应用其微生物燃料电池的可能性.在补强能源基质的条件与海生菌肉汤配方进行产电驯化作用,量化评估生物膜形成的产电与脱色的优劣,经由交流阻抗图谱获得产电机制.在不同培养基条件下,量化希瓦氏菌的稳定电压及优化条件,并推论高盐条件下电导、溶液电阻、产电模式及机制.结果表明,最高输出电压随着周期数增加而趋于稳定,其平均电压为278.9mV,溶液电阻为30.73Ω,电荷转移电阻为176Ω/cm2;在一个运行周期内,希瓦氏菌均能在每个周期内完全脱色,最大比生长速率(SGR)为0.778 4h-1,最大比脱色速率(SDR)为82.63mg/(L·h),且微生物的染料脱色和生物产电两者彼此为竞争关系;随着电极间距的增大,希瓦氏菌微生物燃料电池的电导和盐度均不断地上升,发现电极间距在12.4cm为最佳,希瓦氏菌的最适pH范围是5.3~7.0.研究希瓦氏菌在双槽式微生物燃料电池中的性能有利于同时产电与处理染料,此点对染料废水污染处理同时能源回收再利用确实具有永续发展的实质意义.  相似文献   

9.
颗粒活性炭改进阳极提升微生物燃料电池性能的研究   总被引:2,自引:0,他引:2  
微生物燃料电池(MFCs)的阳极是产电菌降解有机污染物并产电的场所,是微生物燃料电池性能提升的限制性因素之一,本研究通过改进阳极提升微生物燃料电池产电性能.试验采用了两种类型的微生物燃料电池,用作对比的常规炭布阳极微生物燃料电池(Carbon-MFCs)和用颗粒活性炭(GAC)改进阳极的微生物燃料电池(GAC-MFCs),对比实验结果表明用GAC改进阳极可以有效提高微生物燃料电池功率输出:Carbon-MFCs在一个星期驯化后,输出电压稳定在300mV,最大功率密度到达200mW/m2;GAC-MFCs需要较长驯化期,在一个星期驯化后,输出电压100mV,但在2000h后,输出电压稳定在380mV,阳极的改进使输出电压提高26.7%,最大输出功率密度达到560mW/m2,提高了180%;颗粒活性炭的巨大比表面积增加了生物膜载体面积,提高了产电菌和协同参与产电菌总量,使库伦效率提高了3.4倍;颗粒活性炭的物理和电学特性使电池内阻降低38%.结果显示:使用颗粒活性炭作阳极可有效提高微生物燃料电池功率输出.  相似文献   

10.
太阳能作为一种取之不尽、用之不竭的清洁能源,将成为未来新能源的重要组成部分.目前人们除了利用太阳能光伏发电以外,还有利用仿生光合作用将太阳能转化为化学能、利用半导体光电极分解水制氢等方式.而在半导体材料中,低成本环保型的化合物半导体光伏材料(如Cu2ZnSnS4等)具有优良的光伏发电性能,同时也非常适合作为太阳光分解水制氢的材料.文章综述了近年来在Cu2ZnSnS4光伏电池及其太阳光分解水制氢领域的研究进展.  相似文献   

11.
微生物燃料电池处理苯酚废水   总被引:2,自引:0,他引:2  
文章采用能作为电子供体的特征污染物苯酚化合物为阳极室的底物,厌氧微生物为阳极催化剂,钛基-二氧化铅电极为阴极来构建微生物燃料电池,利用阳极室处理苯酚废水,同时输出能量,探求利用微生物燃料电池处理苯酚废水的新模式,且为有毒有害物质的去除提供新方法;同时研究不同温度及苯酚质量浓度对微生物燃料电池处理苯酚废水的性能影响。研究表明,微生物燃料电池能够处理苯酚废水,在苯酚质量浓度为0.15 g/L,温度为35℃的实验条件下去除效率为99.63%。  相似文献   

12.
为解决微生物燃料电池阴极室中电极反硝化和非电极反硝化二者的冲突,构建出一种三室交互型微生物燃料电池。在一个循环周期内,电池功率密度平均27.0 mW/cm~2,反硝化速率平均0.92 mg/(L·h),所需有机碳源量COD/NO_3~-仅为3.9,整体性能优于相同条件下的传统双室型微生物燃料电池;交互式控制方式优于三室电池同时开关的运行方式;24 h是实验废水条件的最佳交互时间。三室交互型微生物燃料电池在高效脱氮产电的同时,充分利用了电子供体,节约了反硝化所需的有机碳源。  相似文献   

13.
微生物燃料电池(MFC)是能在处理有机污染物时产电的装置。着重研究了MFC同步处理老龄垃圾渗滤液和其产电能力。实验在典型双室MFC装置中进行,其中以碳毡为电极材料,活性污泥为接种源,铁氰化钾溶液为阴极液。MFC驯化6个周期后产电达到稳定,此时以垃圾渗滤液和污泥作为阳极液,检测了电池的产电性能及其对垃圾渗滤液的处理效果。结果表明,经过驯化电池的最大功率密度比使用未驯化的电极对照组提高了22倍,达到了439.1 m W/m~2,电池内阻约为1 kΩ。同时扫描电镜(SEM)观察到电极表面形成一层由典型的球菌和杆菌组成的生物膜。电池运行15 d,垃圾渗滤液化学需氧量(COD)、总氮、氨氮的去除率分别达到了(49.05%±1.40%)、(68.95%±1.07%)、(73.54%±0.91%)。本研究为同步产能及处理老龄垃圾渗滤液提供了数据支持。  相似文献   

14.
为解决微生物燃料电池阴极室中电极反硝化和非电极反硝化二者的冲突,构建出一种三室交互型微生物燃料电池。在一个循环周期内,电池功率密度平均27.0 mW/cm~2,反硝化速率平均0.92 mg/(L·h),所需有机碳源量COD/NO_3~-仅为3.9,整体性能优于相同条件下的传统双室型微生物燃料电池;交互式控制方式优于三室电池同时开关的运行方式;24 h是实验废水条件的最佳交互时间。三室交互型微生物燃料电池在高效脱氮产电的同时,充分利用了电子供体,节约了反硝化所需的有机碳源。  相似文献   

15.
叶绿素及其同类物在固体电极上的光电化学研究是饶有兴趣的课题,利用这种体系可望获得最大的太阳能转换效率,目前有关的研究体系不尽相同,有的用叶绿体的类囊体膜作为光电化学电池的材料,有的将叶绿素修饰在金属或半导体上以制成光活性电报。我们用简单的叶绿素涂层电极和无机电解质水溶液构成光电化学电池,不仅获得了快速响应的光电  相似文献   

16.
文章介绍了微生物燃料电池(MFC)的结构,对原有的通过质子交换膜连接的结构进行改良,并且对分体式微生物燃料电池的盐桥了进行研究,分析盐桥的孔径对整个微生物燃料电池体系产能和清洁2个方面的影响.实验结果证明了盐桥用于MFC降解污水是可行的,并且其截面积的增加对系统的产电和COD的降解均有促进作用.  相似文献   

17.
利用简单的一步水热法制备多壁碳纳米管负载Ni_(0.85)Se纳米复合材料,并采用XRD、SEM和TEM测试技术对材料进行表征.将其作为阴极催化剂应用于微生物燃料电池,电池的产电功率为190.7 mW·m~(-2),远高于使用单一Ni_(0.85)Se和碳纳米管材料,可达到使用铂碳的68.5%.由于铂碳的价格昂贵,所制备的Ni_(0.85)Se/MWCNT纳米复合材料具有替代铂碳开发低成本微生物燃料电池的潜力.  相似文献   

18.
微生物燃料电池是一种新型能源,在处理污水的同时产生电能。然而目前微生物燃料电池产电效率低,无法进行大规模的工业生产,如何提高微生物燃料电池的产电效率已经成为国内外研究的热点。设计了由双室微生物燃料电池构建的电压串联及并联、生物量串联及并联共4组电池实验,对不同连接方式进行比较,燃料电池在不同连接方式下的产电效率以及对污水的处理能力均有所不同。同时也设计了升压电路,保证燃料电池的电压基本维持在680 mV左右。生物实验结果表明,电压串、并联及生物量串、并联都能使燃料电池的工作电压有不同程度的提高;升压,电压串、并联及生物量串、并联能不同程度地提高燃料电池对有机物的降解能力,其中生物量串、并联对提高有机物的降解能力最为显著。  相似文献   

19.
随着全球工业不断发展,对可再生能源加大投入是解决目前化石燃料消耗和环境污染严重等问题的重要举措.光增强型可充电锌–空气电池可充分地将自然界多余的太阳能转化为电能并储存,从而提高能源利用率和光电转换效率,且其供电不受天气变化等自然因素的制约.催化剂作为电极的重要组成部分,对锌–空气电池的性能发挥重要作用.首先介绍了光增强型可充电锌–空气电池的工作原理,在此基础上重点就光/电催化剂的制备方法、性能调控以及双功能特性在可充电锌–空气电池中的研究和应用等进行了概述,最后就该领域今后的研究机遇和面临的挑战进行了总结.  相似文献   

20.
微生物燃料电池具有原料广泛、反应条件温和、清洁高效等优点。简述了MFC的原理、分类,对微生物燃料电池(MFC)产电影响因素进行了阐述,分析了MFC技术的用途,最后归纳了MFC技术的研究发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号