首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
活性炭比表面积对双电层电容特性的影响   总被引:1,自引:1,他引:0  
用KOH活化活性炭作为电极材料制作双电层电容器,用接触角测定其润湿性,用恒流充放电、循环伏安等方法研究活性炭的电化学性能.结果显示,炭膜浸润时间最短约为90 min,双电层电容器的比电容随比表面积增加而增大.比表面积为1932m2·g-1的炭样在1mol·L-1 的H2SO4电解液(677mA·g-1)中充放电最大比电容为167F·g-1.  相似文献   

2.
以人发和蔗糖为炭源,通过水热碳化法和相继的KOH活化法,成功制备了N,S双掺杂活性炭.通过SEM、氮气吸附和XPS对所制备的碳材料的形貌、结构和表面性质进行了详细的表征.在6mol·L-1 KOH电解液中,对所制备的碳材料的电化学电容性能进行了测试.由于N、O、S等多种类的元素掺杂所表现出来的协同效应,所制备的碳材料表现出较大的赝电容,在6mol·L-1KOH电解液中的比电容值可以达到174.5F·g-1.实验利用可再生生物质,成功制备出了多种杂原子掺杂的碳材料,该碳材料拥有高比表面积和优异的电化学性能.  相似文献   

3.
以KMnO4、MnCl2和KOH为原料利用液相化学共沉淀法制备了MnO2电极材料,通过X-射线衍射、扫描电子显微镜、比表面积分析、热重分析、循环伏安法和恒流充放电等测试手段对所合成材料的物理性质和电化学性能进行了表征.研究结果表明:该材料为无定型结构α-MnO2,比表面积高达90 m2·g-1,在0.5 mol·L-1 Li2SO4电解液中的电势窗口为0~0.8 V(vs.SCE),在扫描速率为1 mV·s-1时的比电容高达110.2 F·g-1,漏电流为0.117 mA,经500次充放电后仍有良好的循环稳定性.  相似文献   

4.
中等比表面积高容量活性炭电极材料制备和表征   总被引:2,自引:0,他引:2  
以天然高分子椰壳为原料,采用ZnCl2,预活化和CO2/水蒸气活化的二次活化法制备活性炭.用氮气吸附和傅里叶红外表征活性炭材料的比表面积,孔结构以及表面化学性质.结果显示,所制备的活性炭比表面积和孔径可调,中孔率为16.3%~36.9%.经首步活化的中间炭具有丰富的微孔和表面官能团,并随着第二步活化时间的增加逐渐分解,同时伴随着炭烧失率增加,导致比表面积、孔容和孔径的增大.以制备的活性炭作为电极材料,6 mol·L-1 KOH电解液构成模拟电容器.采用恒流充放电、循环伏安、交流阻抗等方法研究了其电化学性能.结果显示,含氧官能团增加了活性炭表面的润湿性,并对比电容的增加有较大的贡献;而炭材料的比表面积增加对比电容有负面影响.中等比表面积968 m2·g-1样品的比电容达到278 F·g-1,面积比电容高达29μF·cm-2.  相似文献   

5.
以正硅酸乙酯为模板硅源,间苯二酚和甲醛为炭源,通过溶胶一凝胶反应,制得中孔炭材料.采用SEM、XRD、N2吸附等温线研究了炭材料的形貌和结构;采用电化学工作站研究了炭材料的电化学电容性能.结果表明,炭材料为石墨化的无序结构,比表面积为1313m2·g-1,孔径约10nm.在6mol·L-1H2s04中表现出良好的电化学电容性能.当放电电流密度为0.05A·g-1时,炭材料的质量比电容为265F·g-1,其容量保持率达92.8%,具有良好的电化学稳定性和可逆性.  相似文献   

6.
以酚醛树脂为前驱体,以聚乙二醇为致孔剂,采用聚合物共混法制备超级电容器用中孔炭电极材料. 采用N2吸附法测试了炭材料的比表面积和孔结构参数. 采用恒流充放电、循环伏安、交流阻抗等评价了其在1mol·L-1Et4NBF4/PC有机电解液中的电化学双电层电容性能. 结果表明,酚醛树脂和聚乙二醇等比例共混炭化制备的多孔炭的比表面积为618m2·g-1,中孔率为59.7%,比电容为32F·g-1,大电流性能和循环性能良好.  相似文献   

7.
以栗子壳为碳源,先在800℃炭化制备具有多级结构的新型生物质炭材料(CAC8),然后与苯胺单体通过原位聚合得到生物质炭/聚苯胺(CAC8/PANI)复合材料.用XRD,BET,TG和SEM等对样品进行了表征.结果表明,CAC8具有大的比表面积(1 568.0 m2·g-1)和孔体积(0.94cm3·g-1).在1 mol·L-1 H2SO4电解质溶液中,CAC8比电容为207F·g-1,而CAC8/PANI复合材料比电容高达597F·g-1,并且经过1000次充放电循环后,比电容保留率为80%.  相似文献   

8.
制备具有高比表面积及良好导电性的含氮碳材料是提高超级电容器电化学性能的重要途径.文章将三聚氰胺甲醛树脂预聚体及十六烷基三甲基溴化铵(CTAB)改性的氧化石墨烯(GO)复合,经水热反应、碳化及活化等步骤制备了三聚氰胺/石墨烯复合碳材料,通过XRD、BET、孔径表征、循环伏安法和交流阻抗等方法对碳材料的物相结构和电化学性能进行表征测试,研究复合碳材料的制备条件对电化学性能的影响.结果显示,碳材料以介孔为主,平均孔径为3.62 nm,比表面积为497 m2·g-1;在CTAB与GO质量比为1∶1,p H=9,条件下制得的复合碳材料,在6 mol·L-1KOH电解液中的质量比电容为113 F·g-1.  相似文献   

9.
以V2O5为原料,采用熔融水淬法制备V2O5干凝胶,经氨气程序升温还原V2O5得到VN粉体.通过XRD,循环伏安法、恒电流充放电和交流阻抗等方法对V2O5原料、干凝胶和VN的物相结构与电化学性能进行表征测试,研究VN的制备条件对电化学性能的影响.结果显示,V2O5原料经过熔融水淬处理后,晶体结构发生较大的变化.在空速为300 h-1、升温速率为2℃·min-1下,氨气还原V2O5制得的VN在1 mol·L-1的KOH碱性电解液中电化学反应电阻最小.当放电电流密度为0.25 A·g-1时,VN电极材料的比电容值达到74.2 F·g-1,且恒流充放电曲线对称性较好.  相似文献   

10.
有机元素共掺杂能有效改善碳材料的电容性能。通过氮、磷共掺杂合成三维石墨烯(N/P-G)电极材料。通过XRD、SEM、TEM、XPS等对样品微观结构和表面物性进行表征。结果表明,当掺杂氮含量为7.03%,磷含量为4.62%,所合成N/P-G的比表面积可达156.138 m2·g-1,其平均孔径为4.45 nm,同时具有三维多孔结构。电化学性能研究表明,在1 A·g-1电流密度下比电容高达145.4 F·g-1,在16 A·g-1电流下比电容仍可保持100.8 F·g-1。所制备的氮磷共掺杂石墨烯作为电极材料可以应用于超级电容器中,前良好。  相似文献   

11.
介孔炭负载二氧化锰复合材料电化学的性能   总被引:1,自引:0,他引:1  
以KMnO4、MnSO4与介孔炭(MC)为原料,通过简单的化学液相共沉淀法制备了MnO2/MC复合材料,借助X线衍射(XRD)、透射电镜(TEM)、能量色散谱(EDS)及N2吸附-脱附对产物进行了表征.电化学性能测试表明,MnO2/MC电极在0.1 mo1·L-1 Na2SO4的电解液中、-0.2~0.8 V(vs SCE)的电势范围内具有良好的电容行为,比电容可高达270.7 F·g-1.  相似文献   

12.
通过常温下的液相-氧化还原法制备了层状δ-MnO2,用X射线衍射、热重分析、傅立叶红外光谱、扫描电子显微镜等对其物理性质进行了表征、并对其在1mol·L-1 LiOH和1mol·L-1 KOH电解液中的电化学性能进行了研究.实验结果表明,δ-MnO2在扫描速度为1mV·s-1的速度下,电容达到218F·g-1,甚至在扫描速率高达500mV·s-1时,仍表现出明显的氧化-还原性能,这表明该δ-MnO2具有大电流快速充放电的特性.  相似文献   

13.
利用质量分数为60%硝酸直接氧化以SAPO-11为模板、蔗糖为碳源、2步液相浸渍法合成的介孔炭,并对材料的形貌和结构进行了表征.结果表明,介孔炭的表面形貌和孔道结构发生了变化,且成功地修饰了含氧官能团,其比表面积由967.8 m2/g增大到1 015 m2/g,孔容由0.61 cm3/g提高到0.84 cm3/g.综合分析多孔炭材料在1 mol/L H2SO4电解液中的电化学性能,结果表明硝酸氧化后的多孔炭材料具有更大的比电容(189 F/g),比电容保持率达96.8%,以及较好的导电性和循环性能.  相似文献   

14.
以硝酸钴为原料、尿素为沉淀剂、柠檬酸三纳为模板,用水热法制备了Co3O4,并采用循环伏安、恒流充放电等方法研究了样品的电化学性能.结果表明,Co3O4电极在6mol·L-1KOH溶液中、在0~0.4V电位范围内、电流密度为5mA·cm2时,单电级比电容可达900F·g-1.  相似文献   

15.
用固相合成法制备Ag2O作为超级电容器材料,通过循环伏安与恒流充放电等测试手段对Ag2O电极及与作为负极的活性炭电极组成的电容进行分析.结果表明,在7mol·L-1KOH电解液中,Ag2O电极在0.15~0.35V(相对于Hg/HgO)的电压范围内表现出了法拉第电容特性.在不同电流密度下,电极比容量达427.3~554.9F·g-1,Ag2O/活性炭单体电容器比电容为42.5~61.65F·g-1.同时还对正极中Ag2O的含量及导电剂对Ag2O/活性炭单体电容器性能的影响进行了研究.  相似文献   

16.
采用尿素辅助溶胶凝胶法合成了尖晶石型掺钴锰酸锂(L iMn2-xCoxO4,0≤x≤0.3)纳米颗粒.以L iMn2-xCoxO4电极为正极,活性炭(AC)电极为负极,在1 mol.L-1L i2SO4水系电解液中组装成模拟非对称超级电容器AC/L iMn2-xCoxO4,通过循环伏安和恒流充放电法研究其赝电容性能.电化学测试结果表明,随着钴掺杂量的增加,AC/L iMn2-xCoxO4电容器的比电容呈下降趋势,但循环性能得到改善;其中AC/L iMn1.9Co0.1O4电容器展现出较大的比电容和较好的循环性能.在L i2SO4水系电解液中,当工作电压为(0-1.4)V、电流密度为100 mA.g-1时,AC/L iMn1.9Co0.1O4电容器的初始比电容为42.6 F.g-1;经1 000次循环后比电容为40.8 F.g-1,比电容保持率为95.8%.  相似文献   

17.
金属有机框架材料(MOFs)由于其具有较高的比表面积,可调节的孔隙结构,以及结构、功能多样性,使其作为前驱体在电化学等方面具有广阔的应用前景.采用水热法合成了金属有机框架材料[Zn3(bpdc)3(bpy)]·2DMF·4H2O](ZBB),并以此为前驱体,通过炭化-活化法制备了多孔炭ZBBC-T-A,研究了不同炭化温度,不同的炭碱比对多孔炭微观结构及电化学性能的影响.结果表明:多孔炭ZBBC-800-1∶3是以微、介孔为主,且最大比表面积达2 294.6 m2 ·g-1;以6 mol·L-1 KOH为电解液,在电流密度为1 A·g-1时,其比电容为304.8 F·g-1;电流密度从1 A·g-1增加到10 A·g-1时,电容损失率为21.26%;在1 A·g-1的电流密度下,经过5 000次循环后,电容保持率为95.85%.其能量密度为8.06 Wh·kg-1.  相似文献   

18.
对CRF气凝胶在H2 SO4电解液中的电化学行为进行研究 ,表明CRF气凝胶在H2 SO4电解液中电化学性能稳定 ,得到的单电极的电容值比实测的双电层电容器的电容值要大 ,完善双电层电容器的制备工艺使得电解液供应充分 ,有望进一步提高双电层电容器的电容值 .理论计算得出的双电层电容器的电容值要大于实测电容值 ,优化电极制备条件使得CRF气凝胶电极的比表面积并没有被全部利用  相似文献   

19.
以改进的Hummer法制备氧化石墨(GO),用原位聚合法合成聚吡咯/氧化石墨(Ppy/GO)复合物,运用CV和CP法测试电化学性能,并以XRD,FTIR,SEM分析材料的结构形貌.结果表明:(1)Ppy/GO复合物具有较好的电化学电容性能.当电流密度为0.5A.g-1时,复合物在1mol.L-1 H2SO4溶液中的比电容可达358.93F.g-1.(2)Ppy/GO复合物较Ppy有更好的循环稳定性和倍率充放电性能.当扫描速率分别为10,20,50mV.s-1时,复合物电极的循环伏安曲线均呈现出良好的矩形特征,并能保持一致性,而在相同扫描速率下,Ppy的循环伏安曲线不稳定;当电流密度分别为1,2,5A.g-1时,复合物的比电容分别达204.71,130.82,60.21F.g-1,高于相同条件下Ppy的178.05,123.89,46.52F.g-1.以上说明将聚吡咯与氧化石墨形成复合物有利于改善聚吡咯的电化学电容性能.  相似文献   

20.
采用低热固相反应法制备出纳米MnO2活性材料.循环伏安测试结果表明,在6 mol.L-1KOH电解液中,MnO2电极在-0.3~0.6 V(vs.Hg/HgO)的电压范围内表现出较好的超电容特性.恒流充放电结果表明,以MnO2为正极、活性炭(AC)为负极组成的碱性MnO2/AC混合电容器在比电流为100 mA.g-1、充放电电压范围为0~1.5 V条件下的放电比电容可达66.2 F.g-1.同样条件下,MnO2与活性炭质量比为80∶20的复合正极与活性炭负极组成的(MnO2 AC)/AC混合电容器的比电容可达78.2 F.g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号