首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
《科学通报(英文版)》1998,43(19):1630-1630
Since 1992, the study of biological functions of HIV-1 gp41 has made great progress. Experimental evidence from several research groups demonstrated that gp41 has a putative cellular receptor. A recombinant soluble gp41 (aa539-684) and gp41 immunosuppressive peptide (aa583-599) could bind to human B lymphocytes and monocytes, but weakly bind to T lymphocytes. It was found that gp41 contains two cellular binding sites (aa583-599 and 641-675). GP41 could selectively inhibit cell proliferation of human T, B lymphocytes and monocytes, enhance human MHC class Ⅰ, Ⅱ and ICAM-1 molecule expression on cell surface. Gp41 binding proteins and a monoclonal antibody against the first binding site could inhibit this modulation effect. Amino acid sequence homology exists between gp41 and human type Ⅰ interferons, and the homologous region is located in the first binding site on gp41 and in the receptor binding site on type Ⅰ interferons. Studies in other groups indicate that both binding sites in gp41 may be associated with HIV infection of cells. Peptides containing two binding sites could respectively inhibit HIV infection of cells. A monoclonal antibody recognizing the second binding site could neutralize lab-strains and recently separated strains of HIV-1. Besides, antibodies against two regions (homologous with gp41 binding sites) of SIV transmembrane protein gp32 could protect macaques from SIV infection. These results suggest that the study of gp41 binding sites and cellular receptor could contribute to understanding the mechanism of HIV infection and to developing HIV vaccine and anti-HIV drugs.  相似文献   

2.
The CD4 antigen has been subverted as a receptor by the human and simian immunodeficiency viruses (HIV-1, HIV-2 and SIV). Several groups have reported that recombinant, soluble forms of the CD4 molecule (sCD4) block the infection of T lymphocytes by HIV-1, as CD4 binds the HIV envelope glycoprotein, gp120, with high affinity. We now report that sCD4 blocks diverse strains of HIV-1, HIV-2 and SIV, but is less effective for HIV-2. The blocking effect is apparent even after adsorption of virions to CD4 cells. Soluble CD4 prevents HIV infection of T-lymphocytic and myelomonocytic cell lines, but neither sCD4 nor anti-CD4 antibodies inhibit infection of glioma and rhabdomyosarcoma cell lines.  相似文献   

3.
Molecular architecture of native HIV-1 gp120 trimers   总被引:1,自引:0,他引:1  
Liu J  Bartesaghi A  Borgnia MJ  Sapiro G  Subramaniam S 《Nature》2008,455(7209):109-113
The envelope glycoproteins (Env) of human and simian immunodeficiency viruses (HIV and SIV, respectively) mediate virus binding to the cell surface receptor CD4 on target cells to initiate infection. Env is a heterodimer of a transmembrane glycoprotein (gp41) and a surface glycoprotein (gp120), and forms trimers on the surface of the viral membrane. Using cryo-electron tomography combined with three-dimensional image classification and averaging, we report the three-dimensional structures of trimeric Env displayed on native HIV-1 in the unliganded state, in complex with the broadly neutralizing antibody b12 and in a ternary complex with CD4 and the 17b antibody. By fitting the known crystal structures of the monomeric gp120 core in the b12- and CD4/17b-bound conformations into the density maps derived by electron tomography, we derive molecular models for the native HIV-1 gp120 trimer in unliganded and CD4-bound states. We demonstrate that CD4 binding results in a major reorganization of the Env trimer, causing an outward rotation and displacement of each gp120 monomer. This appears to be coupled with a rearrangement of the gp41 region along the central axis of the trimer, leading to closer contact between the viral and target cell membranes. Our findings elucidate the structure and conformational changes of trimeric HIV-1 gp120 relevant to antibody neutralization and attachment to target cells.  相似文献   

4.
Chen B  Vogan EM  Gong H  Skehel JJ  Wiley DC  Harrison SC 《Nature》2005,433(7028):834-841
Envelope glycoproteins of human and simian immunodeficiency virus (HIV and SIV) undergo a series of conformational changes when they interact with receptor (CD4) and co-receptor on the surface of a potential host cell, leading ultimately to fusion of viral and cellular membranes. Structures of fragments of gp120 and gp41 from the envelope protein are known, in conformations corresponding to their post-attachment and postfusion states, respectively. We report the crystal structure, at 4 A resolution, of a fully glycosylated SIV gp120 core, in a conformation representing its prefusion state, before interaction with CD4. Parts of the protein have a markedly different organization than they do in the CD4-bound state. Comparison of the unliganded and CD4-bound structures leads to a model for events that accompany receptor engagement of an envelope glycoprotein trimer. The two conformations of gp120 also present distinct antigenic surfaces. We identify the binding site for a compound that inhibits viral entry.  相似文献   

5.
Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160.   总被引:45,自引:0,他引:45  
S Hallenberger  V Bosch  H Angliker  E Shaw  H D Klenk  W Garten 《Nature》1992,360(6402):358-361
The envelope glycoprotein of human immunodeficiency virus (HIV) initiates infection by mediating fusion of the viral envelope with the cell membrane. Fusion activity requires proteolytic cleavage of the gp160 protein into gp120 and gp41 at a site containing several arginine and lysine residues. Activation at basic cleavage sites is observed with many membrane proteins of cellular and viral origin. We have recently found that the enzyme activating the haemagglutinin of fowl plague virus (FPV), an avian influenza virus, is furin. Furin, a subtilisin-like eukaryotic endoprotease, has a substrate specificity for the consensus amino-acid sequence Arg-X-Lys/Arg-Arg at the cleavage site. We show here that the glycoprotein of HIV-1, which has the same protease recognition motif as the FPV haemagglutinin, is also activated by furin.  相似文献   

6.
Prevention of HIV-1 IIIB infection in chimpanzees by CD4 immunoadhesin   总被引:11,自引:0,他引:11  
The first step in infection by the human immunodeficiency virus (HIV) is the specific binding of gp120, the envelope glycoprotein of HIV, to its cellular receptor, CD4. To inhibit this interaction, soluble CD4 analogues that compete for gp120 binding and block HIV infection in vitro have been developed. To determine whether these analogues can protect an uninfected individual from challenge with HIV, we used the chimpanzee model system of cell-free HIV infection. Chimpanzees are readily infected with the IIIB strain of HIV-1, becoming viraemic within about 4-6 weeks of challenge, although they do not develop the profound CD4+ T-cell depletion and immunodeficiency characteristic of HIV infection in humans. CD4 immunoadhesin (CD4-IgG), a chimaeric molecule consisting of the N-terminal two immunoglobulin-like regions of CD4 joined to the Fc region of human IgG1, was selected as the CD4 analogue for testing because it has a longer half-life than CD4, contributed by the IgG Fc portion of the molecule. In humans, this difference results in a 25-fold increased concentration of CD4-IgG in the blood compared with recombinant CD4. Here we report that pretreatment with CD4-IgG can prevent the infection of chimpanzees with HIV-1. The need for a preventative agent is particularly acute in perinatal HIV transmission. As recombinant CD4-IgG, like the parent IgG molecule, efficiently crosses the primate placenta, it may be possible to set up an immune state in a fetus before HIV transfer occurs, thus preventing infection.  相似文献   

7.
L Buonocore  J K Rose 《Nature》1990,345(6276):625-628
The envelope glycoprotein (gp120/41) of the human immunodeficiency virus (HIV-1) attaches the virus to the cellular CD4 receptor and mediates virus entry into the cytoplasm. In addition to being required for formation of infectious HIV, expression of gp120/41 at the plasma membrane causes the cytopathic fusion of cells carrying the CD4 antigen. The expression of gp120/41 is therefore an ideal target for therapeutic strategies designed to combat AIDS. Here we show that expression of a soluble CD4 molecule, mutated to contain a specific retention signal for the endoplasmic reticulum, blocks secretion of gp120 and surface expression of gp120/41, but does not interfere with transport of wild-type CD4. By blocking transport of the HIV glycoprotein, this retained CD4 molecule prevents the fusion of CD4 cells that is normally caused by the HIV glycoprotein. Expression of the retained CD4 molecule in human T cells might therefore be useful in the intracellular immunization procedure suggested by Baltimore.  相似文献   

8.
Some monoclonal antibodies (mAbs) could inhibit infection by HIV-1. In this study, four mAbs against HIV-1 gp41 were prepared in mice. All four mAbs could bind to the recombinant soluble gp41 and recognize the native envelope glycoprotein gp160 expressed on the HIV-Env^+ CHO-WT cell in flow cytometry analysis. Interestingly, the results show that all four mAbs purified by affinity chromatography could inhibit HIV-1 Env-mediated membrane fusion (syncytium formation) by 40%-60% at 10 μg/mL, which implies potential inhibitory activities against HIV-1.  相似文献   

9.
Designing CD4 immunoadhesins for AIDS therapy   总被引:66,自引:0,他引:66  
A newly-constructed antibody-like molecule containing the gp120-binding domain of the receptor for human immunodeficiency virus blocks HIV-1 infection of T cells and monocytes. Its long plasma half-life, other antibody-like properties, and potential to block all HIV isolates, make it a good candidate for therapeutic use.  相似文献   

10.
HIV requires multiple gp120 molecules for CD4-mediated infection   总被引:35,自引:0,他引:35  
S P Layne  M J Merges  M Dembo  J L Spouge  P L Nara 《Nature》1990,346(6281):277-279
Binding of glycoprotein gp120 to the T cell-surface receptor CD4 is a crucial step in CD4-dependent infection of a target cell by the human immunodeficiency virus (HIV). Blocking some or all gp120 molecules on the viral surface should therefore inhibit infection. Consequently, competitive receptor inhibitors, such as soluble synthetic CD4 (sCD4), synthetic CD4 peptides and immunoglobulins, have been investigated in vitro and in vivo, but little is known about the molecular mechanisms of these inhibitors. We have now quantitatively examined blocking by soluble CD4 in the hope of gaining insight into the complex process of viral binding, adsorption and penetration. At low sCD4 concentrations, the inhibition in three HIV strains is proportional to the binding of gp120. The biological association constant (gp120-sCD4 Kassoc) for HIV-2NIHZ is (8.5 +/- 0.5) x 10(7) M-1, whereas Kassoc for HIV-1HXB3 (1.4 +/- 0.2) and HIV-1MN (1.7 +/- 0.1) x 10(9) M-1 are 15-20-fold larger. For all three viral strains, the biological Kassoc from infectivity assays is comparable to the chemical Kassoc. The inhibitory action of sCD4 at high concentrations, however, is not fully explained by simple proportionality with the binding to gp120. Positive synergy in blocking of infection occurs after about half the viral gp120s molecules are occupied, and is identical for all three viral strains, despite the large differences in Kassoc. Our method of measuring the viral-cell receptor Kassoc directly from infectivity assays is applicable to immunoglobulins, to other viruses and to assays using primary or transformed cell lines.  相似文献   

11.
HIV infection is blocked in vitro by recombinant soluble CD4   总被引:71,自引:0,他引:71  
The T-cell surface glycoprotein, CD4 (T4), acts as the cellular receptor for human immunodeficiency virus, type 1 (HIV-1), the first member of the family of viruses that cause acquired immunodeficiency syndrome. HIV recognition of CD4 is probably mediated through the virus envelope glycoprotein (gp120) as shown by co-immunoprecipitation of CD4 and gp120 (ref.5) and by experiments using recombinant gp120 as a binding probe. Here we demonstrate that recombinant soluble CD4(rsT4) purified from the conditioned medium of a stably transfected Chinese hamster ovary cell line is a potent inhibitor of both virus replication and virus-induced cell fusion (syncytium formation). These results suggest that rsT4 is sufficient to bind HIV, and that it represents a potential anti-viral therapy for HIV infection.  相似文献   

12.
The Sabin type 1 vaccine strain of poliovirus is probably the safest and most successful live-attenuated vaccine virus used in humans. Its widespread use since the early 1960s has contributed significantly to the virtual eradication of poliomyelitis in developed countries. We have reported previously the construction of an intertypic antigen chimaera of poliovirus, based on the Sabin 1 strain, and proposed that this virus could be modified to express on its surface antigenic determinants from other pathogens. We describe here the construction and characterization of a poliovirus antigen chimaera containing an epitope from the transmembrane glycoprotein (gp41) of human immunodeficiency virus type 1 (HIV-1). In antibody absorption experiments, the virus chimaera inhibited neutralization of HIV-1 by antipeptide monoclonal antibodies specific for the gp41 epitope and significantly reduced the group specific neutralizing activity of HIV-1-positive human sera. Rabbit antisera raised by subcutaneous injection of the polio/HIV chimaera in adjuvant was shown to be specific for HIV-1 gp41 in peptide-binding assays and by western blotting. Moreover, the antisera neutralized a wide range of American and African HIV-1 isolates and also inhibited virus-induced cell fusion. Monoclonal antibodies against the HIV-1 derived regions of the chimaera also neutralized HIV-1. These results establish the potential of using poliovirus for the presentation of foreign antigens and suggest that Sabin 1 poliovirus/HIV chimaeras could offer an approach to the development of an HIV vaccine.  相似文献   

13.
Based on the recent advances of the research on the mechanism of HIV-1 infection, a novel model to elucidate the mechanism of HIV entry into the target cells is proposed and the perspective about the putative receptor is discussed in this review. Understanding of the crystal structure of HIV-1 transmembrane protein gp41 and the functions of HIV-1 receptor, co-receptor and the putative receptor will lead to developing effective HIV vaccine and anti-HIVdrugs.  相似文献   

14.
Based on the recent advances of the research on the mechanism of HIV-1 infection, a novel model to elucidate the mechanism of HIV entry into the target cells is proposed and the perspective about the putative receptor is discussed in this review. Understanding of the crystal structure of HIV-1 transmembrane protein gp41 and the functions of HIV-1 receptor, co-receptor and the putative receptor will lead to developing effective HIV vaccine and anti-HIV drugs.  相似文献   

15.
The T lymphocyte surface protein CD4 is an integral membrane glycoprotein noncovalently associated with the tyrosine protein kinase p56lck. In normal T cells, surface association of CD4 molecules with other CD4 molecules or other T-cell surface proteins, such as the T-cell antigen receptor, stimulates the activity of the p56lck tyrosine kinase, resulting in the phosphorylation of various cellular proteins at tyrosine residues. Thus, the signal transduction in T cells generated through the surface engagement of CD4 is similar to that observed for the class of growth factor receptors possessing endogenous tyrosine kinase activity. As CD4 is also the cellular receptor for the human immunodeficiency virus (HIV), binding of the virus or gp120 (the virus surface protein responsible for specific CD4+ T-cell association) could mimic the types of immunological interactions that have previously been found to stimulate p56lck and trigger T-cell activation pathways. We have evaluated this possibility and report here that binding of HIV-1 or the virus glycoprotein gp120 to CD4+ human T cells fails to elicit detectable p56lck-dependent tyrosine kinase activation and signalling, alterations in the composition of cellular phosphotyrosine-containing proteins, or changes in intracellular Ca2+ concentration.  相似文献   

16.
L K Clayton  M Sieh  D A Pious  E L Reinherz 《Nature》1989,339(6225):548-551
Interactions of CD4 with the class II major histocompatibility complex (MHC) are crucial during thymic ontogeny and subsequently for helper and cytotoxic functions of CD4+CD8- T lymphocytes. CD4 is the receptor for the T-lymphotropic human immunodeficiency virus and binds its envelope glycoprotein, gp120. The residues involved in gp120 binding have been localized to a region within the immunoglobulin-like domain I of CD4, which corresponds to CDR2 of an immunoglobulin variable region, but the CD4 residues important in MHC class II interaction have not been characterized. Here, using a cell-binding assay dependent specifically on the CD4-MHC class II association, we analyse the effects of mutations in CD4 on class II versus gp120 binding. Mutations in CDR2 that destroy gp120 binding affect CD4-MHC class II binding similarly. In addition, binding of soluble gp120 to CD4-transfected cells abrogates their ability to interact with class II-bearing B lymphocytes. In contrast, other mutations within domains I or II that have no effect on gp120 binding eliminate or substantially decrease class II interaction. Thus, the CD4 binding site for class II MHC is more complex than the gp120 binding site, possibly reflecting a broader area of contact with the former ligand and a requirement for appropriate juxtaposition of the two N-terminal domains. The ability of gp120 to inhibit the binding of class II MHC to CD4 could be important in disrupting normal T-cell physiology, acting both to inhibit immune responses and to prevent differentiation of CD4+CD8+ thymocytes into CD4+CD8- T lymphocytes.  相似文献   

17.
Some neutralizing antibodies against HIV-1 envelope proteins were highly effective to inhibit the infection of different strainsin vitro, and existed in the infected individuals with very low levels. We suggested multi-epitope-vaccine as a new strategy to increase levels of neutralizing antibodies and the abilities against HIV mutationin vivo. Two candidate multi-epitope-vaccines induced antibodies with predefined multi-epitope-specificity in rhesus macaque. These antibodies recognized corresponding neutralizing epitopes on epitope-peptides, gp41 peptides, V3 loop peptide, rsgp41 and rgp120. Besides, three candidate epitope-vaccines in combination (another kind of multi-epitopevaccines) showed similar potency to induce predefined multiple immune responses in rabbits. These results suggest that multi-epitope-vaccines may be a new strategy to induce multi-antiviral activities against HIV-1 infection and mutations.  相似文献   

18.
Binding of the human immunodeficiency virus (HIV) to infectable host cells, such as B and T lymphocytes, monocytes and colorectal cells, is mediated by a high-affinity interaction between the gp120 component of the viral envelope glycoprotein and the CD4 receptor. Upon binding, it is thought that the second component of the envelope, gp41, mediates fusion between the viral envelope and host cell membranes. However, the early steps of HIV infection have not yet been thoroughly elucidated. Viral entry was first reported to be mediated by pH-dependent receptor-mediated endocytosis; subsequent studies have shown entry to be pH-independent. Although direct fusion of virus to plasma membranes of infected cells has been observed by electron microscopy, it is still formally possible that the infectious path of the virus involves receptor-mediated endocytosis. To gain a better understanding of receptor function in viral entry, we have analysed the ability of several altered or truncated forms of CD4 to serve as effective viral receptors. Our results indicate that domains beyond the HIV-binding region of CD4 are not required for viral infection. Some of the altered forms of CD4 that serve as effective HIV receptors are severely impaired in their ability to be endocytosed. These experiments therefore support the notion that viral fusion to the plasma membrane is sufficient for infection.  相似文献   

19.
T Shioda  J A Levy  C Cheng-Mayer 《Nature》1991,349(6305):167-169
Strains of human immunodeficiency virus type 1 (HIV-1) display a high degree of biological heterogeneity which may be linked to certain clinical manifestation of AIDS. They vary in their ability to infect different cell types, to replicate rapidly and to high titre in culture, to down-modulate the CD4 receptor, and to cause cytopathic changes in infected cells. Some of these in vitro properties correlate with pathogenicity of the virus in vivo. To map the viral determinants of the cellular host range of HIV-1, recombinant viruses were generated between biologically active molecular clones of HIV-1 isolates showing differences in infection of primary peripheral blood macrophages and established T-cell lines. We report here that a specific region of the envelope gp120 gene representing 159 amino-acid residues of glycoprotein gp120 seems to determine macrophage tropism, whereas an overlapping region representing 321 amino-acid residues determines T cell-line tropism. These studies provide a basis for relating functional domains of the HIV-1 env gene to pathogenic potential.  相似文献   

20.
The remarkable diversity, glycosylation and conformational flexibility of the human immunodeficiency virus type 1 (HIV-1) envelope (Env), including substantial rearrangement of the gp120 glycoprotein upon binding the CD4 receptor, allow it to evade antibody-mediated neutralization. Despite this complexity, the HIV-1 Env must retain conserved determinants that mediate CD4 binding. To evaluate how these determinants might provide opportunities for antibody recognition, we created variants of gp120 stabilized in the CD4-bound state, assessed binding of CD4 and of receptor-binding-site antibodies, and determined the structure at 2.3 A resolution of the broadly neutralizing antibody b12 in complex with gp120. b12 binds to a conformationally invariant surface that overlaps a distinct subset of the CD4-binding site. This surface is involved in the metastable attachment of CD4, before the gp120 rearrangement required for stable engagement. A site of vulnerability, related to a functional requirement for efficient association with CD4, can therefore be targeted by antibody to neutralize HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号