首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的研究不同条件下角接触轴承动刚度对电主轴动态特性的影响,为优化主轴动态特性提供理论支持.方法基于拟动力学研究方法求解角接触轴承动态性能,建立电主轴转子系统有限元模型分析不同轴承滚珠材料和预紧力对轴承动刚度及电主轴动态特性的影响.结果钢球轴承刚度小于陶瓷球轴承,且随着转速提高,钢球轴承刚度下降较快;装配陶瓷球轴承电主轴一阶固有频率较高,工作端位移较小;随着预紧力提高,角接触轴承刚度软化效应减弱,主轴固有频率增大,轴端位移减小.结论改用陶瓷滚珠或者适当提高预紧力都能有效改善轴承动力学特性,提高电主轴固有频率,使得主轴动态特性得到优化.  相似文献   

2.
轴承结合部动态参数识别与等效分析模型的研究   总被引:1,自引:0,他引:1  
针对轴承结合部有限元分析模型参数难以确定的问题,提出了基于模态实验数据的建模方法,分析了球轴承接触变形的特点.利用拉格朗日力学分析原理建立了球轴承装配结构3自由度的动力学方程,依据模态实验测得的固有频率和阻尼比,采用最小二乘法解得单个钢球在接触法线方向上的刚度和阻尼,进而计算得到了轴承结合部在径向、轴向以及转角等3个方向的刚度和阻尼.采用弹簧阻尼单元模拟轴承结合部的结构动力学方程,通过与由拉格朗日力学分析原理建立的动力学模型的对比,来确定弹簧阻尼单元的数值,并建立了轴承结合部有限元分析模型.研究结果表明:在对装配结构有限元进行分析计算时,结构前3阶固有频率及振型与实验测得的振型一致,对应固有频率的相对误差在5%以内.  相似文献   

3.
目的建立陶瓷电主轴有限元正交分析模型,研究3个影响因素对陶瓷电主轴固有频率的影响规律.方法通过有限元建模计算和实验验证,对陶瓷电主轴的固有频率进行求解,并基于正交分析法,对陶瓷电主轴的固有频率随轴承刚度、空心转轴的中心孔直径和支撑跨距3个主要参量变化的趋势进行研究.结果不同因素对陶瓷电主轴的固有频率的影响有较大差别,其中轴承刚度对陶瓷电主轴的固有频率影响较大,空心转轴的中心孔直径的影响稍大于支撑跨距的影响,但二者差距不明显,且二者对陶瓷电主轴固有频率的影响都较轴承刚度小.结论实验结果与有限元分析结果吻合程度较高,建立的模型能准确地模拟陶瓷电主轴,可以用于变参计算.  相似文献   

4.
目的求解170SD30-SY无内圈陶瓷电主轴转子的固有频率,分析转子动态特性.方法利用Prohl传递矩阵法、有限元法对陶瓷电主轴转子进行了固有频率的计算和仿真分析,并绘制位移与频率、刚度与频率曲线,对陶瓷电主轴转子动态特性进行分析.结果通过Prohl传递矩阵法求解的结果与有限元仿真结果对比,固有频率误差最大为12%,有限元分析得出转子前四阶振型,主轴前端振动范围及刚度与固有频率的变化趋势,从而便于研究预紧与振动之间的关系.结论通过计算与仿真验证,证实两种方法的可行性及有限元法便于求解分析,得出陶瓷电主轴的固有频率高于普通钢轴,增加刚度有利于固有频率的提高,为陶瓷电主轴转子的动态特性分析提供充分依据.  相似文献   

5.
目的研究不同转速、载荷条件下机床主轴轴承的最佳预紧力,满足高速机床主轴全速段性能要求.方法建立基于拟静力学的轴承分析模型,计算不同转速、负荷条件下满足轴承使用寿命的最大轴向预紧力,和能够限制轴承陀螺旋转的最小轴向预紧力,得出预紧力取值的上下限.通过试验分析轴向预紧力对电主轴轴承温升和振动的影响.结果在低速范围内,轴向预紧力的变化对主轴振动和轴承温度无明显影响.在中速范围内,随着轴向预紧力增加,主轴振动有较明显减弱,轴承温度有较明显增加.在高速范围内,随着轴向预紧力增加,主轴振动大幅度减弱,轴承温度大幅度增加.结论在每个转速范围内分别引入不同的预紧力上下限权重值,得出满足高速机床主轴全速段性能要求的轴承最佳预紧力.  相似文献   

6.
为分析滚动直线导轨固有频率与滚珠切向接触刚度影响因素的关系,在建立综合考虑切向与法向接触刚度的滚珠接触力学模型的基础上,采用拉格朗日方程完成对整个导轨动力学解析建模,推导出各振型的固有频率解析表达式.基于某系列导轨的固有频率数值计算,对比分析了有无切向接触刚度对整个导轨固有频率的影响,并进一步分析了预紧力和摩擦系数等切向刚度影响因素对整个导轨固有频率的影响.分析结果表明:考虑切向接触刚度的滚动直线导轨比未考虑切向接触刚度的固有频率稍高;5个固有频率均随预紧力的增加呈非线性增加;摩擦系数对低频侧翻振动影响最大,对偏航振动影响最小.  相似文献   

7.
利用高性能结构陶瓷作为高速主轴及轴承材料研制开发了一种无内圈式高速陶瓷电主轴单元,进行了陶瓷轴承失效机理的分析与内部结构参数的优化,确定了高速陶瓷电主轴-轴承的最佳预负荷及最佳润滑条件,实现了高速陶瓷电主轴单元样机的精密装配,并对其进行了综合性能测试与分析.结果表明,在最佳预负荷和油气润滑条件下,高速陶瓷电主轴可充分发挥结构陶瓷材料优良的综合性能,如高硬度、低热膨胀性、轻重量、高耐磨性和好的化学及热性能,极大地减小了主轴-轴承单元高速旋转的离心力和惯性力,并有效提高了电主轴系统的精度、刚度和使用寿命,且运行稳定可靠,精度保持性好.  相似文献   

8.
为了研究机床主轴系统非均匀温升带来的热位移对轴承预紧力和动刚度的影响,建立了一种机床主轴系统热机耦合模型。在分析轴承摩擦损耗影响因素的基础上,确定了系统热载荷和边界条件,采用有限元方法求解了机床主轴瞬时温升和热变形,根据轴承载荷-位移关系式求解轴承的热诱导预紧力,基于改进的Jones模型计算了轴承径向刚度。最后,实验测定轴承预紧力,分析预紧力影响因素。理论计算与实验结果表明:在定位预紧下,主轴、隔圈、轴承座和轴承热位移会导致轴承预紧力和径向刚度的增加,且随着初始预紧力、转速和环境温度增加,预紧力变化幅值也增加。此外,局部冷却引起热位移的变化,从而改变轴承预紧力和径向刚度的变化规律。  相似文献   

9.
预紧对高速角接触球轴承动态刚度的影响   总被引:2,自引:0,他引:2  
以滚动轴承动力学和沟道控制理论为基础,建立考虑预紧的高速角接触球轴承动力学模型.依据赫兹接触理论,给出考虑预紧的轴承径向刚度、轴向刚度和角刚度计算表达式.以7012/CD轴承为例,分析预紧对高速角接触球轴承动态刚度的影响.分析结果表明,定位预紧下轴承的径向刚度随转速的增大而增大,而轴向刚度和角刚度随转速的增大,先增大后减小;定压预紧下,轴承径向刚度受转速影响较小,而轴向刚度和角刚度随转速增大急剧下降.当轴承转速较高时,采用定位预紧较定压预紧可获得更高的刚度.  相似文献   

10.
定压预紧主轴轴向动态刚度特性研究   总被引:1,自引:0,他引:1  
针对目前主轴动态刚度研究中存在的建模过程复杂、计算量大、忽略轴承受力分析的问题,结合理论建模及实验测试,系统研究了定压预紧主轴轴向动态刚度随轴向载荷的变化规律。基于球轴承轴向载荷与轴向变形的经验公式,建立了定压预紧主轴轴向动态刚度分析模型,理论推导出定压预紧主轴轴向动态刚度随轴向载荷的变化关系;设计了定压预紧主轴动态刚度测试实验,实现了对工作状态下主轴轴承位移量及相应轴向载荷的精确测试;求解了主轴的轴向动态刚度,并与仿真数据进行了对比。实验结果表明:在前轴承内外圈压紧方向,随着轴向力的增大,主轴的轴向刚度呈现增大趋势;在前轴承内外圈脱离方向,随着轴向力的增大,其主轴的轴向刚度先减小后趋于定值。实验结果验证了模型仿真的有效性和正确性。  相似文献   

11.
为研究悬臂梁安装的接触刚度和摩擦系数对其固有频率的影响,首先采用ANSYSY-workbench软件对悬臂梁建立有限元模型并进行模态分析,导出横向弯曲振动的固有频率和模态振型。同时根据欧拉—伯努利梁理论求解悬臂梁横向弯曲振动方程,得到悬臂梁横向弯曲振动的固有频率及模态振型的数值解,对比有限元分析与理论推导的前6阶模态分析结果,两者的模态振型一致,对应的固有频率相对偏差率最大值为4.15%。对比分析结果说明,运用ANSYSY-workbench软件进一步分析悬臂梁安装的接触刚度和摩擦系数对固有频率的影响是可行的。建立有安装接触面的悬臂梁有限元模型,针对讨论的悬臂梁横向弯曲振动情况,在悬臂梁上下两个接触面设置考虑摩擦因素的两个接触对,分别分析接触面的法向接触刚度和摩擦系数对悬臂梁固有频率的影响,并同时对接触刚度进行了实验研究。仿真与实验结果表明,有安装接触面的悬臂梁固有频率随着法向接触刚度与摩擦系数的增大而增大,且有安装接触面的悬臂梁固有频率小于约束端完全固定的悬臂梁固有频率。  相似文献   

12.
为提高主轴系统的抗振性能,以一台典型的主轴升降式数控龙门镗铣床主轴系统为例,研究了轴承和弹性联轴节两种结合面的有限元建模方法,仿真分析了主轴系统的模态和谐响应动力学特性,通过模态实验验证了动力学仿真分析的有效性,提出了提高主轴系统抗振性能的优化设计方案。研究表明:建立合理的结合面模型是提高仿真精度的关键之一,所研究的主轴系统的主要振型是扭转振动,主轴轴承刚度对各阶固有频率和扭转振幅影响很小,通过优化弹性联轴节刚度和套筒长度可以有效提高主轴系统的抗振性能。研究成果对全面了解并优化主轴系统动态性能具有指导意义。  相似文献   

13.
采用角接触轴承的机床高速主轴在转速上升过程中由于摩擦发热而使主轴温度不断上升,从而限制了机床转速范围的提高以及主轴的稳定性。预紧力的大小对机床主轴单元的工作温度有重要的影响,传统的预紧方式已不能满足高速化主轴的工作温度需要。本文选取7012C轴承为研究对象,在分析其不同转速下的最佳预紧力与轴向位移的基础上,设计一种新型预紧机构,以叠层压电陶瓷为驱动源,柔性机构为驱动机构。经仿真计算证明该预紧机构可行,其预紧机构的输出力与输出位移均可满足要求。  相似文献   

14.
采用集总质量法、梁单元法和有限元法3种数值方法研究轴承-转子系统动态特性。数值结果表明,有限元法能够高精度地分析系统固有频率和模态振型,为轴承-转子系统提供了设计依据并为油膜力、电磁力支承的轴承-转子系统奠定了理论分析基础。  相似文献   

15.
针对高速电主轴在高速切削过程中主轴轴端的振动问题,文中通过建立主轴轴端在受高速切削力的条件下的拉刀—主轴—轴承双转子系统振动动力学模型,并对电主轴的固有频率与振型进行有限元分析,模拟主轴在切削力的作用下的响应,最后通过测试电主轴的振动量完成对振动分析结果的验证。结果表明:总切削力在垂直于假定工作平面方向上的分力对主轴振动的影响最大,实现了对主轴振动的更有效的分析方法。该方法对提高主轴加工精度有一定的指导作用。  相似文献   

16.
针对航空发动机高压压气机导叶作动筒在剧烈振动工作环境中的易损问题,确定导叶作动筒在振动过程中的固有频率与相关振型,获取关键结构件在标准功率谱下的动态响应,通过有限元法建立了考虑流固耦合的非线性模态分析仿真模型。通过单一变量法利用仿真模型研究接触刚度、活塞位于不同行程位置对相关固有频率与振型的影响机制,发现关键接触位置的接触刚度因子取0.8能保证仿真准确度并满足接触刚度,工作过程中活塞在行程上的位置发生变化,对第二、三阶的固有频率影响较大。完成共振检查试验,实测固有频率与仿真结果对应良好,验证了有限元分析模型的准确性。基于模态结果,根据航空标准建立随机振动仿真模型,得到关键结构件在3σ下的应力及变形响应,为导叶作动筒结构优化设计提供依据。  相似文献   

17.
传动实验平台的动态特性对精密减速器测试结果的精度和可靠性有重要影响。以自行研制的新型多轴精密传动实验平台为分析对象,基于赫兹接触理论提出了交叉滚子直线导轨结合部刚度的计算方法;根据交错轴减速器测试的实际工况,利用弹簧单元模拟导轨结合部的接触特性,建立了实验平台在极限位置下的动力学模型;在此基础上利用有限元方法进行了理论模态分析,获得了平台的前4阶固有频率和模态振型;最后通过样机测试对平台的动态特性加以验证,得到平台实际工况下的最大振动速度为0.487mm/s。结果表明该新型传动实验平台满足精密设备的振动标准,具有良好的动态性能。  相似文献   

18.
以凸轮轴高速数控磨床主轴系统为研究对象,对主轴系统进行了三维有限元建模.建模过程中,将轴承支承简化为弹性支承,利用有限元分析软件Ansys Workbench对主轴系统进行了静力学分析、模态分析以及谐响应分析.得出主轴系统应力应变云图,主轴系统的前6阶固有频率和振型以及频响曲线图,并计算出主轴系统的静刚度和相应的临界转速.分析结果说明,主轴系统在工作过程中不会发生共振,且主轴的共振频率范围发生在2 800 Hz附近.对主轴系统的静刚度进行试验测试验证有限元分析的可靠性,两者之间的误差为12.9%.  相似文献   

19.
目的研究CJ190Z4机床主轴模型机壳和主轴的动静态特性,得到主轴前6阶固有频率,振型和变形应力等,确定主轴前端及中端位移-频率关系和相位角-频率关系.方法利用Solidworks建立了CJ190Z4机床主轴模型的三维实体模型,将实验模型分为主轴和机壳两个子单元,运用Ansys Workbench有限元分析软件,对CJ190Z4机床主轴系统进行静力和动态分析,在此基础上进行谐响应分析,通过实测得到实验模型的刚体振动模态.结果不同温度下的主轴的固有频率不同,20℃下的前3阶固有频率分别为151.1 Hz,1 152.9 Hz,2 157.3 Hz,机壳单元的固有频率最小为255.15 Hz.主轴的1阶临界转速n=69 066 r/min,远大于主轴的最高工作转速3 000 r/min,主轴能有效地避免共振发生,保证了主轴的加工精度.主轴最大位移量是4.1μm,最大应力是19.5 MPa.固有频率随温度升高而降低.结论提高主轴的刚度和阻尼,可以有效减小振动变形,避免共振现象的发生;提高机壳单元的1阶固有频率或加设阻尼抑制机壳单元1阶共振,应加强机壳单元基础板的抗弯刚度.  相似文献   

20.
机床主轴承预紧状态随运行工况动态变化,但预紧力与轴承动力学特性非线性相关,根据轴承动态特性变化对预紧力实施动态优化是提高球轴承综合性能的关键.为提高主轴轴承综合性能,提出一种新的预紧力优化准则.构建了温度影响的球轴承动力学模型,分析变转速、变预紧力和变温升综合影响的球轴承动力学特性变化规律,采用主成分分析法对预紧力与轴承动态指标间的耦合关系实施动态降维优化.MATLAB仿真结果表明,在恒速和温升状态下轴承动态预紧状态与滚动体-内滚道接触载荷关系密切,其贡献率高达95.8%,该方法为球轴承动态预紧优化提供重要理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号