首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
采用等温溶解法研究三元体系Li+、Mg2+//borate–H2O在288.15,K时稳定相平衡,并测定其溶解度及物化性质(密度、折光率和p H),根据实验数据绘制稳定相图及物化性质–组成图.结果表明:该三元体系为水合物I型,无复盐及固溶体形成;相图中有1个共饱点E(Li2B4O7·3H2O+Mg2B6O11·15H2O),对应的液相组成(质量分数)为:Li2B4O72.88%、Mg B4O7 0.02%,2条单变量曲线AE和BE,2个单盐结晶区,对应的平衡固相为Li2B4O7·3H2O和Mg2B6O11·15H2O;随着Li2B4O7的含量增大,Mg B4O7的含量减小,表明Li2B4O7对Mg B4O7存在一定的盐析效应.研究发现:章氏硼镁石在该体系288.15,K时不能够稳定存在,极易与水反应转化为更为稳定的多水硼镁石.稳定平衡液相的密度、折光率、p H均随着液相中Li2B4O7浓度的变化呈有规律的变化.其中,密度和折光率随着Li2B4O7浓度的增大而增大,到共饱点处达到最大值,采用经验公式拟合密度和折光率,拟合值与实验值吻合得较好.  相似文献   

2.
采用等温蒸发法研究了K2CO3-KCl-K2B4O7-H2O四元体系298 K介稳平衡相关系,并测定了该体系达介稳平衡时液相的密度、折光率和pH值等物化性质.根据实验数据,绘制了该体系298 K的介稳相图及物化性质-组成图.结果表明:该四元体系属简单共饱型,无复盐或固溶体形成;其溶解度等温图含有一个共饱点、三条单变量曲线和3个结晶相区.3个结晶相区分别对应于K2B4O7·4H2O,K2CO3·3/2 H2O和KCl.共饱点的平衡液相组成为w(K2CO3)=51.57%,w(KCl)=1.09%,w(K2B4O7)=1.29%,所对应的平衡固相为K2CO3·3/2 H2O KCl K2B4O7·4H2O.  相似文献   

3.
采用等温蒸发法研究了四元含锂铷氯化物体系Li+,Na+,Rb+//Cl--H2O 298.2K下的相平衡关系,测定了平衡液相的溶解度、密度和折光率.基于实验数据,绘制了该四元体系的立体图、干基图、密度-组成图和折光率-组成图.该四元体系298.2K下的介稳相图由1个共饱和点,3条单变量曲线和3个结晶区(RbCl、NaCl、LiCl·H2O)组成.将研究的结果同LiCl+KCl+RbCl+H2O体系进行了对比和分析,总结Na+和K+对三元体系Li+,Rb+//Cl--H2O的影响.应用折光率计算的经验公式对实验测定的折光率进行了验证,其最大绝对误差小于-0.0090,从而证明了实验数据的可靠性.  相似文献   

4.
采用等温溶解平衡法研究了五元体系Li+,K+//Cl-,B4O2-7,CO2-3-H2O在298 K时相关系和平衡液相物化性质。对各组分的溶解度以及密度、折光率、粘度、电导率和pH值进行了测定,并绘制了相关相图,得到5个结晶相区和3个共饱点。该体系没有固溶体和复盐生成,为简单共饱和型体系。  相似文献   

5.
采用等温溶解平衡法研究了五元体系 L i+ ,K+ / / Cl- ,B4O2 -7,CO2 -3- H2 O在 2 98K时相关系和平衡液相物化性质。对各组分的溶解度以及密度、折光率、粘度、电导率和 p H值进行了测定 ,并绘制了相关相图 ,得到 5个结晶相区和 3个共饱点。该体系没有固溶体和复盐生成 ,为简单共饱和型体系。  相似文献   

6.
应用湿渣法测定了NaNO3-H3BO3-H2O三元体系在50℃下的平衡数据及平衡液相的密度、折光率、电导率等物化性质,用等腰直角三角形绘制了NaNO3-H3BO3-H2O三元体系的等温相图。结果表明,在硼酸组成为5.73%,硝酸钠的组成为48.51%时该体系形成共饱和溶液,并且在该温度下无复盐和水合物生成。用经验公式对平衡液相的密度、折光率进行了计算,计算值与实验值基本吻合。  相似文献   

7.
三元体系K2B4O7-KBr-H2O在298 K的相平衡研究   总被引:1,自引:0,他引:1  
采用等温溶解平衡法研究了三元体系K2B4O7-KBr-H2O在298 K时的相平衡关系及平衡液相的主要物化性质(密度,电导率,pH值).研究发现:该三元体系为简单共饱和型,无复盐及固溶体形成,根据溶解度数据绘制了相图.该体系298 K相图有2条单变度曲线,一个共饱点,相图中单变量曲线所对应的平衡固相分别为:K2B4O7·4H2O, KBr.绘制了物化性质组成图,并简要讨论了物化性质的变化规律.  相似文献   

8.
采用等温溶解平衡法研究四元体系硼酸锂-硼酸钾-硼酸镁-水15℃时固液相平衡,测定了体系溶解度和平衡液相的密度、折光率.研究发现:该体系15℃稳定相图中包含一个共饱点(L+Li_2B_4O_7·3H_2O+K_2B_4O_7·4H_2O+Mg_2B_6O_(11)·15H_2O),其液相组成为w(Li_2B_4O_7)1.31%、w(K2B4O7)10.57%、w(Mg B4O7)0.05%;3个固相结晶区为Li_2B_4O_7·3H_2O、K_2B_4O_7·4 H_2O、Mg_2B_6O_(11)·15H_2O,体系无复盐或固溶体生成.溶液中硼酸锂、硼酸钾对多水硼镁石有很强的盐析效应,液相的密度和折光率随溶液中硼酸锂浓度的增加呈有规律的变化.采用经验公式对密度和折光率进行关联,计算值和实验值吻合较好.  相似文献   

9.
采用等温溶解平衡法研究了323K及348K时三元体系MgCl2-SrCl2-H2O的相平衡关系.根据实验数据,绘制了相应的三元体系相图,并确定了该体系共饱点的液相组成及对应的平衡固相.该三元体系在323K及348K条件下均属于简单共饱型,无复盐及固溶体生成,相图均由一个共饱点,两条单变量曲线和两个结晶区构成,平衡固相均为MgCl2·6H2O和SrCl2·2H2O.并对该三元体系在323K和348K时的相平衡进行了比较和讨论.  相似文献   

10.
采用等温溶解平衡法研究Na_2B_4O_7-Mg_2B_6O_(11)-H_2O体系在298.15,K时稳定相平衡,并测定其溶解度及物化性质(密度和折光率).根据实验数据绘制稳定相图及物化性质-组成图.研究结果表明:该体系为水合物I型,无复盐及固溶体形成;相图中有1个共饱点E(Na_2B_4O_7·10H_2O+Mg_2B_6O_(11)·15H_2O),对应的液相组成(质量分数)为Na_2B_4O_72.95%、Mg_2B_6O_(11)0.034%;2条单变量溶解度曲线AE和BE;2个单盐结晶区,对应的平衡固相分别为Na_2B_4O_7·10H_2O和Mg_2B_6O_(11)·15H_2O;平衡液相中随着Na_2B_4O_7含量的不断增加,Mg_2B_6O_(11)的溶解度逐渐减小,表明Na_2B_4O_7对Mg_2B_6O_(11)有较强的盐析作用.稳定平衡液相的密度、折光率均随着液相中Na_2B_4O_7质量分数的变化呈有规律的变化.采用经验公式对密度和折光率进行了关联,计算值和实验值吻合较好.  相似文献   

11.
用恒温方法研究了四元交互体系 Li,K/Cl,SO_-H_2O 50℃,75℃的平衡溶解度.该系统(50℃,75℃)的相图是由六条单变量线组成,且有五个结晶区,三个单变点.其中的一点是一致性单变点,其余的点是非一致性单变点.采用混合电解质溶液理论 Pitzer 模型,用所测得的该系统的溶解度数据可获得 Pitzer 参数.测定了该体系(25℃)的溶解度、平衡溶液的密度、折光率;平衡固相的溶度积、蒸汽压.计算结果与实测结果一致.  相似文献   

12.
为研究有机溶剂乙二醇(CH2OHCH2OH)的加入对NaNO3和KNO3在H2O中溶液性质的影响,采用自制的相平衡研究装置,用密度-折光率联合的方法,测定了NaNO3和KNO3在CH2OHCH2OH+H2O混合溶剂中在15℃和25℃下的平衡溶解度、密度和折光率。结果表明,在所有饱和体系中,随着乙二醇质量百分含量的增加,盐在混合溶剂中的溶解度和密度降低,而折光率却逐渐增大。不饱和体系中密度和折光率都随着盐含量增加而增加,随着醇比例的增加而上升。用不同的经验关联方程分别对所有饱和体系和不饱和体系的溶解度、折光率及密度数据进行了拟合,获得了较为理想的拟合结果。研究结果提供了碱金属盐在混合溶剂中的热力学数据,为相关溶液化学研究奠定了基础。  相似文献   

13.
测定了四元体系MgCl2-MgSO4-CO(NH2)2-H2O(不含硫酸盐脱水区)在25℃时的等温溶度及相应饱和溶液的密度值和折射率.绘制了该体系的溶度图和性质图.四元体系做出了8支共饱线,3个四元无变点.溶度图有6个单饱和区,分别对应CO(NH2)2,MgSO4*CO(NH2)2*2H2O,MgCl2*4CO(NH2)2*2H2O,MgCl2*CO(NH2)2*4H2O,MgCl2*6H2O和MgSO4*xH2O(x=4,5,6,7).  相似文献   

14.
测定了四元体系MgCl2 _MgSO4 _CO(NH2 ) 2 _H2 O(不含硫酸盐脱水区 )在 2 5℃时的等温溶度及相应饱和溶液的密度值和折射率 .绘制了该体系的溶度图和性质图 .四元体系做出了 8支共饱线 ,3个四元无变点 .溶度图有 6个单饱和区 ,分别对应CO (NH2 ) 2 ,MgSO4 ·CO (NH2 ) 2 ·2H2 O ,MgCl2 · 4CO (NH2 ) 2 · 2H2 O ,MgCl2 ·CO (NH2 ) 2 · 4H2 O ,MgCl2 ·6H2 O和MgSO4 ·xH2 O(x =4 ,5 ,6,7) .  相似文献   

15.
Li-Fe-Si-H_2O体系的热力学分析   总被引:1,自引:0,他引:1  
根据已有热力学数据,绘制25℃时Li-Fe-Si-H2O体系各溶解组分的lgc-pH图、Li-Fe-Si-H2O体系主要物种的优势区图和强碱性区域Li-Fe-Si-H2O体系各沉淀的优势区图。利用这些平衡图对液相制备硅酸铁锂的工艺条件进行热力学分析。研究结果表明:控制溶液的碱度是制备磷酸铁锂前驱体Li2H2SiO4·Fe(OH)2的关键因素,若要利用Li+,Fe2+和H2SiO24-在液相形成Li2H2SiO4·Fe(OH)2,则要维持溶液较高的碱度,使得Li+能与H2SiO42-生成Li2H2SiO4沉淀,并且抑制FeH2SiO4的生成,使Fe2+以Fe(OH)2的形式沉淀;溶液体系的碱性越强,Li2H2SiO4·Fe(OH)2的优势区域越宽,更有利于Li2H2SiO4·Fe(OH)2的合成;采用液相法制备硅酸铁锂时,由于pH值大于15,体系的碱度较高,溶液中Fe2+极容易被氧化,故制备过程难以实现;而利用固相法制备硅酸铁锂,其保护性气氛容易控制,工艺简单,流程短,便于实现。  相似文献   

16.
描述了三元液体混合物等性质线的制作过程 ,并通过实验测定三元体系四氯化碳( 1 ) -苯 ( 2 ) -丙酮 ( 3)在 2 0℃时的密度和折光率 ,绘制出了等密度曲线和等折光率曲线。结果表明此等性质曲线可用于准确定量分析 .  相似文献   

17.
测定了Sm(ClO4)3-Ala-H2O三元体系在35℃时的溶解度和饱和溶液折光率,构制了相应的溶解度图和饱和溶液折光率曲线。溶解度曲线与折光率曲线均由4支组成,分别与Sm(ClO4)3·8H2O,Sm(Ala)4(ClO4)·2H2O(A),Sm(Ala)3(ClO4)3·3H2O(B)和Ala的晶体相对应。  相似文献   

18.
测定了三元体系Er(NO_3)_3。—Met—H_2O在25℃时的溶度和饱和溶液的折光率,结果表明该体系可形成两种配合物,即Er(Met)(NO_3)_3·H_2O与E_r(Met).(NO_3)_3·6H_2O。用相平衡方法合成了 1:4型配合物,通过元素分析、IR、UV、X 粉末衍射、TG—DTG与DSC对其进行了物化性质表征,并讨论了配合行为。  相似文献   

19.
制备和研究了具有H2S,(MoS2 NiS Ag)/Li2SO4 Al2O3/(NiO Ag),air结构的H2S固体氧化物燃料电池用于产生电能和脱除燃料气体中的H2S.电池在600~650 ℃和大气压下运行.燃料电池的电化学性能受电解膜的组成,电极材料和操作温度影响.掺杂了Al2O3 和少量H3BO4的Li2SO4质子传导膜可以提高膜的机械强度和性能,改善膜的致密性和电池的性能.适宜的Li2SO4 和 Al2O3 比为3~4∶1(质量比), 适宜掺杂H3BO4的量为2%~5%(w).掺杂了Ag粉和电解质的金属硫化物复合阳极在H2S气流下很稳定和性能很好, 掺杂了Ag粉和电解质的的NiO复合阴极在去除H2S时性能优于Pt电极催化剂.在650 ℃电池的最大输出功率密度为70 mW·cm -2,最大电流密度为180 mA·cm -2.然而,电池长期运行的稳定性实验仍有待研究.  相似文献   

20.
用Pitzer离子相互作用模型计算了25℃KCl–CsCl–H2O体系溶解度,计算值与实验值相符合;并且计算了二同号正离子K、Cs之间的相互作用参数θKCs和二同号电荷和一异号电荷三离子K、Cs、Cl的相互作用参数ψKCsCl分别以±10%变动时,25℃三元体系KCl–CsCl–H2O溶解度的变化.计算结果显示,两个参数θKCs与ψKCsCl对KCl和CsCl的溶解度都有一定影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号