首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用热重-微分热重(TG-DTG)技术,研究过氧化二异丙苯在动态空气气氛中的热分解过程.运用Starink法,Madhusudanan-Krishnan-Ninan(MKN)法和Achar-Brindley-Sharp-Wendworth(ABSW)法分析非等温动力学数据,推断出过氧化二异丙苯热分解动力学模式为收缩球状R3模型,得到其反应的动力学方程为dα/dt=Aexp(-E/RT)×3(1-α)2/3,热分解反应的活化能E为117.32 kJ.mol-1,活化自由能ΔG≠为123.12 kJ.mol-1,活化焓ΔH≠为113.69 kJ.mol-1,活化熵ΔS≠为-21.41 J.(mol.K)-1.  相似文献   

2.
以α-蒎烯及β-蒎烯为原料,采用改进的聚合工艺合成了软化点(环球)136.0℃、加纳色(铁钴)3的α-蒎烯-β-蒎烯共聚物.通过耐候性、储存稳定性考察,用热重分析(TG)、差示扫描量热法(DSC)和Phadnis的方法,研究了聚合物的热稳定性以及热降解动力学,结果表明,α-蒎烯-β-蒎烯共聚物具有较高的耐热稳定性,质量损失1.0%时的温度为260.0℃,降解机理遵循反应级数(n=2)模型,活化能为145.65 kJ/mol,频率因子的自然对数为26.08 s-1.  相似文献   

3.
利用热分析技术研究了流动气氛下WPO催化剂再氧化的反应行为及非等温反应动力学,采用几种不同的方法处理实验数据均得到较一致的结果,据此推断VPO催化剂最可几的氧化再生机理符合相边界控制的收缩核模型,得到了动力学方程为dα/dt=Aexp(-E/RT)×3(1-α)2/3,活化能E=238.57kJ/mol,指前因子A=7.74×1013s-1.  相似文献   

4.
以TG/DTG/DTA为手段, 研究了N,N′-二苯基顺丁二甲酰胺β成核剂在空气气氛中的热分解动力学,利用Kissinger法、Flynn-Wall-Ozawa(FWO)法对N,N′-二苯基顺丁二甲酰胺β成核剂进行了动力学分析,求出了该物质的热分解动力学参数,同时利用Satava-Sestak法研究了该物质的热分解机理.用等温TG法得到失重10%的寿命方程.结果表明,Kissinger法所求的活化能为113.01 kJ·mol-1,指前因子lg A =9.83;Flynn-Wall-Ozawa法所求得的活化能为112.46 kJ·mol-1.N,N′-二苯基顺丁二甲酰胺β成核剂的热分解机理为相边界反应,圆柱形对称,反应级数n=(1)/(2),其动力学方程为G(α)=1-(1-α)1/2.寿命方程为:ln τ= -36.646+1.9117×104/T.  相似文献   

5.
以TG-DTG为手段,研究二乙基次膦酸铝阻燃剂在氮气气氛中的热分解动力学;利用Kissinger-Akahira-Sunose(KAS)法、Flynn-Wall-Ozawa(FWO)法对其进行热分解动力学研究,计算出该阻燃剂的平均热分解表观活化能分别为260.2和259.4 kJ/mol;利用atava-estk法研究该阻燃剂的热分解机理属于相边界反应,得到其热分解动力学方程为g(α)=1-(1-α)1/3。  相似文献   

6.
SBS-g-MMA的合成及热降解动力学分析   总被引:3,自引:1,他引:2  
将甲基丙烯酸甲酯(MMA)与SBS接枝共聚制得SBS-g-MMA接枝共聚物.利用热分析法研究了该共聚物在升温速率为10 K·min-1的N2气、O2气气氛中的热降解过程与热降解动力学.确定了SBS-g-MMA在N2气气氛下的热降解过程分2步完成,第1步热降解温度为530~720 K,第2步热降解温度为 720~830 K;在O2气气氛下的热降解过程分3步完成,第1步热降解温度为477~597 K,第2步热降解温度为597~714 K,第3步热降解温度为714~774 K.在N2气气氛下的热降解过程的平均活化能Ea=376.27 kJ·mol-1,微分机理函数f(α)=(1-α)[-ln(1-α)]-2/3,指前因子lnA=73.029,积分机理函数g(α)=[-ln(1-α)]3,指前因子lnA=64.220;在O2气气氛下的热降解过程较为复杂,实验结果不明确.  相似文献   

7.
文章采用Kissinger、Flynn-Wall-Ozawa、Achar method、Coats-Redfem和Freemarr-Carroll方法对非等温动力学数据进行了分析,得到了热分解反应的机理函数、动力学参数和热分解反应动力学方程,热分解反应过程的最可几机理函数为D1抛物线法则,受一维扩散机理控制,表观活化能为105.0 kJ/mol,指前因子为9.65×109s-1,采用等温TG技术得到了失重5%、10%和15%的寿终指标。  相似文献   

8.
在水溶液中用硫酸铜和邻苯二甲酸氢钾反应合成了Cu(C8H5O4)2·2H2O,并得到了该配合物的单晶体,通过元素分析、IR光谱、TG-DTA对产物进行鉴定.以Achar法、Coats-Redfern法对TG曲线数据进行非等温动力学拟合,得到第一步脱水反应的动力学方程为dα/dt=Aexp(-E/RT)2(1-α)[-1n(1-α)]1/2,活化能E=135.0kJ/mol,指前因子lg(A/s-1)=14.89;第二步热分解的动力学方程为:dα/dt=Aexp(-E/RT)[-ln(1-α)]-1,活化能E=289.7kJ/mol,指前因子lg(A/s-1)=26.86.  相似文献   

9.
采用非等温差示扫描量热法测试了不同升温速率下氰酸酯/八(γ-氯丙基)倍半硅氧烷(POSS)杂化树脂的固化过程。运用Kissinger法和Flynn-Wall-Ozawa法对杂化树脂固化反应活化能进行了计算,两种不同模型计算的活化能分别为88.57kJ/mol和89.01kJ/mol。含POSS的杂化树脂固化反应级数n=0.904,频率因子A=4.064×107S-1。  相似文献   

10.
将木粉、高密度聚乙烯(HDPE)与不同含量的废旧橡胶粉复合制备木橡塑复合材料,采用热重分析法(TGA)研究各组分材料及复合材料的热解动力学特性,并引入Flynn-Wall-Ozawa模型量化了组分及复合材料的表观活化能。结果表明:木粉、HDPE、废旧橡胶粉复合材料(WRPC)的热解出现两个显著的失重区(230~380 ℃和430~580 ℃),分别对应木粉/废旧橡胶和HDPE的热降解。木粉、废旧橡胶和HDPE热解过程平均活化能值分别为179.2、243.8和246.8 kJ/mol,WPC(木粉、HDPE复合材料)平均活化能为239.3 kJ/mol,WRPC活化能值较WPC低(200.3~208.4 kJ/mol)。活化能的变化表明木、橡、塑3种原料在复合材料的热解过程中具有协同效应,而废旧橡胶的掺入对复合材料的热降解特性发挥了显著的调控作用。  相似文献   

11.
废弃环氧树脂电路板的热解机理及动力学研究   总被引:1,自引:0,他引:1  
采用热分析技术(TGA)研究废弃环氧树脂电路板在氮气气氛和真空条件下热解过程的反应机理和动力学行为.将热解过程分为2个阶段进行机理和动力学研究.研究结果表明:环氧电路板的热解过程第1步是失去水分和小分子物质,第2步是有机材料的裂解.氮气氛围和真空2种条件下裂解反应第1阶段遵循共同的机理函数,是以成核及核成长为控制步骤的A3机理,反应级数为3级:第2阶段都是以幂函数不均匀生长为控制步骤的C1.5机理;真空热解有利于降低反应的活化能;氮气氛围裂解反应各阶段的表观活化能和频率因子分别为:E1=239.95kJ/mol,Al=1.94×1022s-1:E2=130.73 kJ/mol,A2=1.88× 1013 s-1;在真空条件下,裂解反应各阶段的表观活化能和频率因子分别为:E1=74.24 kJ/mol,A1=1.52×108 s-1;E2=41.64 kJ/mol,A2=5.16×1010 s-1.  相似文献   

12.
通过热重法、差示量热扫描法以及红外光谱法研究了由3,3',4,4'-benzophenone tetracarboxylicdianhydride(二苯酮四酸二酐,简称BTDA)和4,4'-(1,3-phenylenedioxy)-dianiline(CAS:2479-461)所形成的一种新型聚酰亚胺的非等温热分解过程,测得其失重5%温度为492℃,失重10%温度为530℃.用Kissinger-Akahira-Sunose(KAS)法和Ozawa法求取活化能Ea,用热分析动力学三因子求算的比较法判断出可能的机理函数.新型聚酰亚胺热分解的活化能为160.30kJ/mol,指前因子lnA为17.67.推断出可能的热反应机理函数为F2,其微分式和积分式分别为(1-α)2和(1-α)-1-1.  相似文献   

13.
以TGA为手段,研究了壳聚糖、β-环糊精、淀粉在氮气环境下的非等温热降解动力学,采用Owaza和Friedman方法,计算了三种物质的降解动力学活化能,并使用Coats-Redfern法计算了三种物质的反应机理函数和指前因子. 结果表明:壳聚糖、β-环糊精、淀粉降解活化能分别是147.1,129.1和148.3kJ/mol,机理函数是-ln(1-α),[-ln(1-α)]2/5和[-ln(1-α)]1/2;lnA为7.7838,8.6499和7.8688min-1.  相似文献   

14.
碳酸钙热分解反应动力学的不同方法研究   总被引:4,自引:0,他引:4  
因比较法和主曲线法在求算热分解动力学"三因子"时基本原理和处理方法不同,为此而探讨了2种方法处理的结果是否一致.利用热重分析(TGA)技术研究了碳酸钙热分解过程,通过这2种方法分别求算了碳酸钙热分解反应动力学"三因子".比较法结果:活化能Ea为174.00kJ·mol-1,指前因子A为9.63×106s-1,机理函数微分形式和积分形式分别为f(α)=2(1-α)1/2和g(α)=1-(1-α)1/2;主曲线法结果:活化能Eα=169.81 kJ/mol,指前因子A=3.84×106s-1,机理函数微分表达式为f(α)=2(1-α)1/1.57,积分表达式为g(α)=1-(1-α)1/1.57,2种方法所得结果基本吻合,说明这2种方法判定动力学"三因子"的一致性和可靠性.  相似文献   

15.
在空气气氛下,利用热重/差热扫描同步热分析仪(TG/DSC),对掺钴草酸锌(CoxZn1-xC2O4.2H2O(摩尔分数x为0和5%))的热分解过程及其动力学进行分析。动力学分析采用多升温速率法,通过Fredman方程和OFW方程2种不同方法对活化能和指前因子进行计算,考察钴掺杂对整个过程的影响。实验结果表明:钴掺杂使草酸锌热分解反应的热量变化由吸热变成放热;随着钴的掺入,反应的活化能降低,即钴掺杂使反应的难度降低;用多元线性回归方法确定的活化能分别为E=178.5 kJ/mol(x=0)和E=150.0 kJ/mol(x=5%),最可几机理函数均为Cn(自催化反应)模型。  相似文献   

16.
对-叔丁基杯[4]的热力学和热分析动力学   总被引:3,自引:0,他引:3  
用热重TG和DSC对杯芳烃对-叔丁基杯[4]热分解过程进行了研究,用多升温速率法和单升温速率法相结合的方法推断出了对-叔丁基杯[4]热分解的可能过程,并推断出了其可能的裂解反应动力学方程及热分析动力学参数;得出了结论脱包结甲苯的过程为23号机理函数,为三级反应过程,动力学方程为dα/dt=Ae-(E)/(RT)(1)/(2)(1-α)3;;表观活化能E为166.97 kJ*mol-1,指前因子A为1.67×1016 s-1;自身热分解脱去叔丁基的过程为1号机理函数,反应过程为一维扩散,动力学方程为dα/dt=Ae-(E)/(RT)(1)/(2)α;活化能E为248.89 kJ*mol-1,指前因子A为42.89 s-1.  相似文献   

17.
制备了[Tb2(pMOBA)6(phen)2]配合物(pMOBA:对甲氧基苯甲酸根离子;phen:1,10邻菲啉),并用元素分析和红外光谱进行了表征,用TG DTG,DTA,SEM和IR技术研究了标题配合物在静态空气中的热行为,运用Malek等提出的热分析动力学数据处理方法,确定了第1步热分解过程的动力学模型为SB(m,n),求得第1步热分解反应的活化能为140.92kJ/mol,活化自由能ΔG为145.16kJ/mol,活化焓ΔH为136.06kJ/mol,活化熵ΔS为-15.53J/(mol·K),指前因子lnA为29.26.  相似文献   

18.
通过热重法(TG-DTG)、差示扫描量热法(DSC)、X射线衍射(XRD)技术研究了固态物质ZnC2O4·2H2O-NiC2O4·2H2O机械混合物(摩尔比3:2)在空气中热分解的过程.TG-DTG的曲线表明:其热分解过程TG曲线中4个明显的台阶与理论失重相吻合.XRD结果表明:样品在500℃煅烧生成为较好晶型的ZnO-NiO混合物.用Kissinger-Akahira-Sunose(KAS)法和Ozawa法求取Ea,用热分析动力学三因子求算的比较法判断出可能的机理函数.ZnC2O4和NiC2O4热分解的活化能分别为175.69~176.48 kJ/mol、220.28~200.93 kJ/mol,ZnC 2O4和NiC2O4分解反应过程可能遵循的机理函数微分形式分别为f(α)=3(1-α)[-ln(1-α)]2/3和f(α)=2(1-α)[-ln(1-α)]1/2;积分形式分别为g(α)=[-In(1-α)]1/3和g(α)=[-ln(1-α)]1/2,都属于随机成核和随后生长型机理函数(Avrami-Erofeer),Am,其调节因子m=3、2.  相似文献   

19.
用非等温热重法研究了Ni(CH3COO)2*4H2O脱水反应的动力学方程和动力学参数,实验数据以Achar法、Coats-Redfern法、MKN法处理得到脱水反应的动力学方程为dα/dt=Aexp(-E/RT)(1-α),活化能为E=91.30 kJ/mol,指前因子lg(A/S-1)=10.37,对反应的动力学补偿效应方程进行了研究.  相似文献   

20.
本文用热重分析研究了本所新研制的线性端羟基聚氨酯弹性粘合剂,利用作者新编的“热重动力学计算机程序包”,采用Coast—Redfern法,测定了四种样品的热重数据并首次报导了这四种样品在热降解两个阶段的动力学数据。在热降解第一阶段,反应级数n为0.7~1.4,热降解表观活化能E为127.14~135.84KJ/moi.,频率因子A为1.37×10~(12)~14.37×10~(12)秒~(-1)。在热降解第二阶段、反应级数n均为3,E为199.54~218.52KJ/mol,,A为2.99×10~(16)~5.35×10~(17)秒~(-1)。作者分别建立了四种样品在热降解两个阶段中的动力学方程,并估算了它们在不同温度下的使用寿命,建立了三种样品的热寿命经验公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号