首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
浸没式超滤膜运行中膜污染控制方法试验研究   总被引:4,自引:1,他引:3  
进行中试试验研究浸没式膜处理地表水的膜污染控制方法,通过考察运行压力的变化,确定曝气、反冲洗、排污、化学清洗等运行操作条件对膜污染控制的效果.试验结果表明,曝气强度过高或过低均会使膜运行压力增长较快,试验中合适的曝气强度为45 m3/(m2·h);气水同时反洗较单独水力反洗的膜运行压力恢复效果好,水力反洗强度存在最优值60 L/(m2·h) ;浓差极化和膜孔吸附造成的阻力占膜阻力的绝大部分,必须定期对浸没式膜进行反洗排污;碱洗(NaOH+NaClO)对膜运行压力恢复效果好,水中有机物污染是造成膜污染的主要原因.  相似文献   

2.
为了研究粉末活性炭(PAC)及水中颗粒物对浸没式中空纤维超滤膜有机物污染的影响特性,分别采用单独超滤和PAC-超滤工艺处理含不同污染物的原水,分析其膜比通量和跨膜压差的变化。结果发现:与单独超滤清水相比,投加25 mg/L和100 mg/L的PAC后,稳定运行的膜比通量分别下降了0.06和0.14 L/(h.m2.kPa)。与单独超滤天然有机物污染原水相比,投加20、50、100 mg/L的PAC时的跨膜压差增长速率分别下降了0.003 1、0.002 3、0.001 7kPa/min。天然有机物原水中投加高岭土后经单独超滤和PAC-超滤工艺处理,水力反洗后的归一化膜比通量与投加前相比,分别平均提高了5%和2.6%。  相似文献   

3.
以渤海黄骅地区南美白对虾养殖用海水为研究对象,通过陶瓷膜超滤和絮凝超滤处理研究,摸索出陶瓷膜超滤养殖用海水工艺条件.①对于普通汪子砂滤海水(TOC=18.55~20.05 mg/L),保持膜通量134 L·m~(-2)·h~(-1)时超滤,20 min恒流运行,跨膜压差0.04~0.062 MPa;当膜通量保持223 L·m~(-2)·h~(-1),跨膜压差0.10~0.12 MPa,12 s反洗可以恢复膜通量.经陶瓷膜超滤后TOC去除率47.16%,UV254去除率1.10%,弧菌去除率100%.②对于有机物丰富汪子砂滤海水(TOC=55.0~59.16 mg/L),超滤处理时,保持膜通量31 L·m~(-2)·h~(-1),10 min恒流运行,跨膜压差从0.14 MPa迅速升至0.20~0.21 MPa.经陶瓷膜超滤后TOC去除率74.49%,UV254去除率32.80%,弧菌去除率100%.③有机物丰富汪子砂滤海水,通过PAC絮凝预处理,PAC添加量45 mg/L,搅拌絮凝时间20 min.保持膜通量105 L·m~(-2)·h~(-1),20 min恒流量运行、12 s反洗,跨膜压差0.05~0.056 MPa;保持膜通量200 L·m~(-2)·h~(-1),跨膜压差0.11~0.13 MPa.絮凝预处理有效减缓膜污染和提高了膜通量.  相似文献   

4.
预处理工艺控制膜污染试验及其机理分析   总被引:1,自引:0,他引:1  
探讨了3种不同预处理技术对延缓超滤膜污染的作用.试验表明,前臭氧+在线混凝+超滤(工艺1)、前臭氧+超滤(工艺2)、前臭氧+预氯化+超滤(工艺3)3种工艺超滤膜过滤的临界通量分别为86.5,59.8,68.1L·(m2·h)-1.其中工艺1临界通量最大,且其稳定运行的时间最长(约190h),能够在一定程度上控制膜污染,这主要是因为水中的有机污染物质通过"矾花"被吸附到胶体类颗粒物上,通过膜筛分截留,减缓了有机污染物质与膜表面的接触与相互作用.控制、缓解膜污染方面,工艺3效果最好,其原因是在NaClO作用下有机物分子特征改变,一方面降低膜的通量负荷,改变其亲疏水性,另一方面NaClO使得滤饼层的电负性增大,过滤截留物和溶解性有机物较易在水力冲洗中被冲掉,跨膜压差得到很好恢复.通过扫描电镜发现,超滤膜表面附着一层滤饼层,滤饼层较疏松,而膜孔已被污染物堵塞;红外光谱研究发现,超滤膜经过氧化预处理和化学清洗,膜表面的某些基团被氧化,膜表面特性被改变.  相似文献   

5.
通过对文丘里水膜除尘器的模拟试验 ,探讨了嘴喷在不同喷水流量下的总除尘效率和对不同粒径的分级除尘效率 ,得出了该种除尘器能有效去除5 μm以上的飞灰颗粒的结论 ,在正常运行条件下 ,该除尘器除尘效率可达 98%以上。影响该除尘器效率的关键是运行中喷嘴容易堵塞 ,导致喷水不均匀 ,使除尘效率大幅降低 ,据此研制了稳定、不停运自动反洗的过滤系统 ,解决了这一问题  相似文献   

6.
长纤维高速过滤器过滤净水厂沉淀出水的试验研究   总被引:4,自引:2,他引:2  
对自行研制的长纤维高速过滤器,进行了净水厂沉淀出水过滤的试验研究和分析.结果表明:长纤维高速过滤器最高滤速可达60m/h以上,当进水浊度为8-12NTU时,滤后水浊度均低于0.4NTU,过滤周期可达24h以上,运行效果稳定,反冲洗彻底,反洗时间短,截污量和产水量均远优于目前常用过滤器,展示了良好的应用前景.  相似文献   

7.
臭氧-生物活性炭与超滤膜联用技术试验研究   总被引:2,自引:0,他引:2  
为解决南方河网地区高温、高藻期臭氧-生物活性炭(O3-BAC)工艺出厂水中细菌超标和活性炭颗粒随水流泄漏等生物安全性问题,进行了超滤膜(UF)工艺作为臭氧-活性炭出水的安全保障技术的试验研究.结果表明:超滤膜工艺出水高锰酸盐指数(CODMn)和溶解性有机碳(DOC)的平均质量浓度为2.31 mg/L和3.53 mg/L,UV254吸光度平均值为0.043 cm-1,浊度平均值为0.06 NTU,颗粒数中粒径大于2μm的平均含量为11/mL,藻类平均数量为1.83×104/L,臭氧-活性炭出水中滋生的细菌完全被超滤膜工艺去除;由于超滤膜进水经常规工艺和臭氧-活性炭工艺的处理,增加了超滤膜周期的过滤时间,减少了水力冲洗水量,因此超滤膜的产水率提高到98.02%.  相似文献   

8.
混合气中CO2的膜接触器分离过程   总被引:6,自引:0,他引:6  
采用中空纤维膜接触器、溶液热再生连续循环实验装置,考察了MDEA(甲基二乙醇胺)溶液及MDEA+AMP(2-氨基-2-甲基-1-丙醇)混合溶液吸收CO2传质过程;建立膜接触器传质模型,比较预测值与实验值。结果表明:在溶液浓度2.5mol/L,气速0.5~3.0 L/min,液速15~150mL/min时,总传质系数Kov为10~32μm/s(MDEA),20~45μm/s(MDEA+AMP);模型预测值和实验值符合较好,对于MDEA溶液误差小于10%,混合溶液误差最大为19%。实验证明MDEA+AMP混合溶液传质性能优于MDEA溶液。  相似文献   

9.
在线周期反冲洗超滤膜污染过程研究   总被引:1,自引:0,他引:1  
采用切割分子量105Da的中空纤维超滤膜,对污水厂二沉池出水进行了不同频度周期反冲洗超滤试验,试验结果与膜污染过程的理论分析相一致.过滤膜阻与反冲洗次数或过滤时间的关系曲线可分为两段:起初的增长段为不可逆滤饼层的累积阶段,直线的斜率为各次反冲洗不可逆膜阻增量;后期的水平段为滤饼层累积与剥离达到相对平衡的阶段.增加在线反冲洗频度降低了不可逆膜阻增量,有效提高了净产水速率.扫描电镜分析结果表明,水力反冲洗去除了部分膜表面污染物,将滤饼层变得松散,一定程度上减轻了膜污染,经化学清洗后,膜表面的滤饼层基本被去除.  相似文献   

10.
建立了用液相色谱-串联质谱法测定饮用水中丙烯酰胺的方法。该法使用Cole-ParmerPTFE滤膜过滤样品,采用AcquityHSST3(1.8μm,2.1X50mm)柱分离,以0.1%甲酸和甲醇为流动相(体积比95:5)分离。采用UPLC/MS/MS电喷雾电离正离子模式(ESI+),多反应检测(MRM),以外标法定量分析。该方法在0.10μg/L到0.60μg/L有良好线性范围。最低检测下限(LOD)0.10μg/L。加标回收率范围为88.9%-106.7%。相对标准偏差均低于8.2%。方法适用与水中丙烯酰胺的测定,具有灵敏度高、重现性好的特点,在水质监测中有重要作用。  相似文献   

11.
IntroductionThe membrane bioreactor system was firstused by Smith et al[1] to filter activated sludge inthe 1 960 s. Since then,membrane manufacturingtechniques have improved and the membranebioreactor for wastewater treatment has beendeveloped and improved[2 7] . The performance of amembrane bioreactordepends to a large parton themembrane characteristics[8,9] .Although differenttypes of membrane bioreactors have been studiedfor and even applied to a variety of waste watertreatment problems,t…  相似文献   

12.
以沙枣多糖的回收率、浓缩效率、膜污染率和膜通量为指标,优化了无机陶瓷膜分离沙枣多糖的工艺参数及膜的清洗方案。在操作压力0.1 MPa,温度30℃,料液比1∶60的条件下分离沙枣多糖提取液,多糖的回收率、浓缩效率、膜污染率和膜通量分别为98.6%、28.4 L//m2·h、11.6%和46 8L//m2·h;采用不同化学清洗方法对陶瓷膜清洗效果进行分析,结果表明用0.5%的HNO3清洗效果最好,可使膜通量的恢复率达到92%。该研究表明利用陶瓷膜分离沙枣多糖是可行的,并且为膜分离多糖的研究提供一定的技术依据。  相似文献   

13.
以工业化陶瓷膜考察了肌苷发酵液在不同浓缩比下的拟稳定通量、粘度及湿固含量变化,在此基础上,将发酵液进、出口调换,可使膜通量提高;分析了水洗方式对肌苷含量及膜通量的影响;探讨了膜的污染机理,提出了有效的膜清洗方法.结果表明:200 nm膜适宜于肌苷发酵液的膜过滤,按流加率4%加入洗水有利于菌体的洗涤,不可逆污染阻力Rf在总阻力中占主要地位,有效的化学清洗方法是:用1%NaOH和0.2%NaClO混合溶液清洗膜40 min后,再以0.5%HNO3溶液清洗5 min,膜通量可迅速恢复.图7,表2,参8.  相似文献   

14.
生物滤层的培养、成熟及稳定运行的不同时期有不同的反冲洗规律.试验结果表明,与培养阶段相比,稳定运行期的反冲洗力度应适当加大,以防止滤层板结.适宜的反冲洗是保证滤层经济有效工作的必要条件.在源水水质Fe为0.034-0.099mg/L、Mn2+为1.428-2.812 mg/L的条件下,适宜的反冲洗参数为反冲洗强度15L/s·m2、反冲洗历时5 min、工作周期72 h.在此条件下,滤池出水锰浓度始终保持在0.05 mg/L以下.同时研究表明,生物除铁除锰技术具有生物高效性,在正常反冲洗后,生物滤池在0-10 min内即能恢复处理能力,保证出水水质.图4,参10.  相似文献   

15.
采用3种构型的陶瓷微滤膜元件对酵母悬浮液进行错流过滤实验,考察陶瓷膜元件的构型对于其错流过滤性能的影响。结果表明:减小陶瓷膜元件的通道直径可以提高料液在膜表面的剪切力,有助于提高过滤稳定通量和临界压力,在3 m/s膜面流速、0.1 MPa跨膜压差条件下,单管、19通道、55通道的稳定通量分别为96、128、196 L/(m2.h);在3 m/s膜面流速条件下,3种陶瓷膜元件的临界压力分别约为0.15、0.2、0.2 MPa。另外,减小通道直径还可以减小滤饼层的比阻,有利于降低过滤阻力;与提高膜面流速来增大过滤通量的方法相比,减小陶瓷膜的通道直径具有能耗较小的优点。  相似文献   

16.
浸没式超滤取代砂滤处理东江水的中试研究   总被引:1,自引:1,他引:0  
中空纤维超滤膜的污染和清洗影响膜处理饮用水工艺的经济性及可运行性.在中试规模下研究了膜组件物理清洗和化学清洗操作条件对超滤膜污染去除效果的影响.试验表明,气水合洗与单独气、水洗方式相比,渗透率恢复系数由80%左右提高至90%以上;渗透率恢复系数同为84.3%时,合洗方式[水洗140L/(m2 · h);气洗22.5 m...  相似文献   

17.
在由三根陶瓷滤管组成的过滤器实验装置上,采用压电式压力传感器和热线风速仪分别测定了脉冲反吹过程中滤管内、外动态压力和滤管外瞬态流场。实验结果表明,在脉冲反吹即将终止而过滤过程尚未开始的过渡过程中,滤管内存在严重的低压区,滤管外存在较大的回流区,此时部分原已离开滤管壁的粉尘重新沉降在滤管壁上甚至穿嵌于滤管壁内,严重妨碍了刚性陶瓷过滤器的长周期稳定运行  相似文献   

18.
为了评价纳微米聚合物颗粒分散体系在低渗透油藏中的流动特征,利用微孔滤膜模拟低渗透油藏的喉道,采 用激光粒度仪和微孔滤膜过滤装置,对其流动特征及其影响因素进行了研究。结果表明:水化时间小于120 h 时,聚 合物颗粒的封堵作用较强;水化时间大于120 h 后,聚合物颗粒逐级调驱能力增强;随着压力差增大,聚合物颗粒储层 深处逐级调驱的效果增强,压力差大于0.15 MPa 后,逐级调驱效果增加的速度明显加快;随着滤膜孔径减小,聚合物 颗粒过滤速度急剧降低,在0.45,0.80µm 微孔滤膜上粒径为1.68µm 聚合物颗粒具有很强的封堵能力,而在3.0 µm 微 孔滤膜上具有较强的储层深部逐级调驱效果;随着聚合物颗粒浓度增加,储层深部逐级调驱效果变弱,颗粒浓度增至 2.0 g/L 后,聚合物颗粒已经没有深部逐级调驱的效果。  相似文献   

19.
冷轧乳化液中纳米铁粉的回收   总被引:3,自引:1,他引:2  
报道了从冷轧乳化液的磁过滤产物中回收纳米铁粉的一种新方法。该方法是经过预处理、清洗除油、漂洗及低温干燥4个步骤完成的,通过试验确定了洗涤次数为3次且每次最佳清洗时间分别为128,35,35min,漂洗次数为4次等条件,回收的纳米铁粉粒度在50~100nm之间,洁净率为96.11%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号