首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
采用溶胶/凝胶法在石英衬底上制备Na-N共掺ZnO纳米薄膜,研究Na掺杂原子分数对ZnO薄膜结构和光学性能的影响.结果表明:适度的Na掺杂,使得薄膜结晶质量明显改善,但过高原子分数的掺杂,则会诱发新的缺陷,导致结晶质量下降.在可见光区域,薄膜透光率随Na掺杂原子分数的升高而升高,掺杂原子分数7.5%的薄膜透光率达到90%左右.Na掺杂原子分数对ZnO的光学带隙产生了直接的影响.  相似文献   

2.
采用水热法制备了N、Pt共掺杂三维海胆型TiO_2材料,通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见(UV-Vis)吸收光谱对材料进行表征分析,同时采用电化学方法对其进行光电转化性能测试.结果表明,N取代TiO_2中O晶格结点的位置,Pt取代Ti晶格结点,成功地掺杂至TiO_2晶格中. N、Pt的掺杂不仅有利于TiO_2从金红石相向锐钛矿相转变,而且对其晶体的生长也起了抑制的作用. N、Pt共掺杂的TiO_2是由具有共同中心的纳米棒组装而成的三维海胆球形结构,球的尺寸分布较窄,直径约为1~2μm,组装纳米棒的直径约为7~8 nm,长度约为100~150 nm.当掺杂摩尔比为5∶5时,样品在紫外和可见光的吸收达到最高,UV-Vis吸收边红移将近100 nm.从光电转换图和线性扫描伏安曲线可以看出,在比表面积、带隙宽度、晶型、载流子数量及元素间协同作用下,掺杂摩尔比为5∶5样品的光电转化效率高达22.4%,为纯海胆型TiO_2的4.48倍.所有试剂均为分析纯.  相似文献   

3.
先用水热法合成ZnO颗粒, 再用溶胶 凝胶法将ZnO颗粒制备成量子点敏化太阳能电池光阳极, 并通过X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 紫外-可见吸收光谱(UV-Vis)和光电流密度 电压曲线分析不同厚度的六方纤锌矿型ZnO光阳极对量子点敏化太阳能电池性能的影响. 结果表明, 增加量子点的吸附面积可使ZnO光阳极的UV-Vis谱吸收带边红移, 进而提升太阳能电池的光电转换效率.  相似文献   

4.
用光电流作用谱,光电流-电势图和UV-Vis吸收光谱研究了CdS和RuL2(NCS)2(L=2, 2'-bipyriclyl-4-4'-dicarboxylic acid)复合敏化ZnO纳米晶电极的光电化学行为。实验证实采用复合敏化比分别用CdS或Ru(Ⅱ)配合物单独敏化ZnO纳米晶电极效果好,通过复合敏化可防止导带上由光注入产生的电子的反向转移而避免了电子的损失。复合敏化电极使可见光光吸收增加,光电流起始波长红移至大于600nm,光电转换效率明显提高。  相似文献   

5.
先用水热法合成ZnO颗粒, 再用溶胶 凝胶法将ZnO颗粒制备成量子点敏化太阳能电池光阳极, 并通过X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 紫外-可见吸收光谱(UV-Vis)和光电流密度 电压曲线分析不同厚度的六方纤锌矿型ZnO光阳极对量子点敏化太阳能电池性能的影响. 结果表明, 增加量子点的吸附面积可使ZnO光阳极的UV-Vis谱吸收带边红移, 进而提升太阳能电池的光电转换效率.  相似文献   

6.
以乙烯基乙二醇为C源,通过简单的液相法制备了C掺杂的ZnO.通过XRD和XPS分析确定C取代ZnO中的O位,掺杂后的ZnO仍为六方纤锌矿结构.将C掺杂ZnO用作染料敏化太阳能电池阳极材料,电池性能各项参数均有所提高,其中光电流提高了40%,光电转化效率提高了32%.采用交流阻抗进一步研究了ZnO染料敏化太阳能电池界面电阻和电子传输性质.  相似文献   

7.
采用超声喷雾热解法在石英衬底上制备了Sn-Mg共掺的ZnO纳米薄膜.借助X射线衍射仪(XRD),扫描电子显微镜(SEM),光致发光谱(PL谱),紫外-可见分光光度计(UV-Vis)和伏安特性曲线(I-V)等测试手段研究了Sn掺杂量的改变对薄膜的结构、形貌和光电性能的影响.结果表明,适量的Sn掺杂可以提高薄膜的表面形貌和光电性能.随着Sn掺杂量的增加,薄膜的(101)衍射峰强度、紫外发光峰、透过率和导电率都是先增加后减小,带隙能量值从3.350eV增加到3.651eV,并且平均透过率均在80%~87%之间.当Sn掺杂量为0.004时,薄膜结晶质量最好,表面最致密,晶粒大小最均匀,紫外发光峰强度最大,导电率最高.  相似文献   

8.
将不同质量分数还原氧化石墨烯(RGO)与Cu_4Bi_4S_9(CBS)纳米带复合,制备成不同比例复合体系(CBS-RGO).以ZnO纳米线为电子受主,CBS或CBS-RGO为电子施主,详细研究了ZnO/CBS、ZnO/CBS-RGO两类异质结构及对应体相异质结太阳能电池的光电性质.随着RGO含量逐步增加,CBS-RGO对应稳态光伏性质逐渐增强,当RGO达到1.6%时,CBS-RGO具有最佳光伏响应强度,随后其光伏性质逐渐减弱.此外,ZnO/CBS-RGO呈现出了优于ZnO/CBS的光伏响应特性.在相同正外电场作用下,ZnO/CBS-RGO同样具有明显优于ZnO/CBS的光电性质;逐步提高外电场,ZnO/CBS-RGO光伏响应增加更为显著.基于1.6%RGO,ZnO/CBS、ZnO/CBS-RGO两类体相异质结太阳能电池最高光电转换效率分别为1.5%和3.6%.从异质结厚度、能级匹配、CBS与RGO接触界面、RGO导电网络及其优越的电子传输特性几个方面,分析了体相异质结构中光生电荷分离的机制以及多通道协同传输对光电性质的作用.  相似文献   

9.
下转换发光粉Y2O3/Sm3+在染料敏化太阳能电池中的应用   总被引:1,自引:0,他引:1  
采用沉淀法制备了Y2O3/Sm3+下转换发光粉,利用X射线衍射、荧光光谱对其进行了表征,并利用该发光粉具有下转换发光的特点将其应用于染料敏化太阳能电池(DSSC).结果表明,Y2O3/Sm3+下转换发光粉可以增加电池对太阳光的吸收范围,提高电池的光电流和光电压.研究了掺杂量对电池性能的影响,当掺杂量为3%时,光电转换效率从5.049%提高到5.94%,表明了其是一种有效提高光电转换效率的方法.  相似文献   

10.
以掺杂氧化锌(ZnO)陶瓷靶为溅射源材料,采用射频磁控溅射技术在石英玻璃衬底上制备了掺杂ZnO系列半导体薄膜样品.利用紫外-可见分光光度计测量了薄膜的透射光谱,通过Swanepoel法确定了薄膜的折射率和消光系数,利用外推法获得了薄膜的光学带隙,研究了不同掺杂对ZnO薄膜光学性能的影响.结果表明,钛掺杂和镓镁合掺后,ZnO薄膜的透过率和光学带隙增加而折射率减小;所有薄膜的折射率均随波长增加而单调减小,呈现出正常的色散特性.  相似文献   

11.
在室温条件下, 用电化学沉积方法在铟锡氧化物(ITO)基底表面生长CdSe纳米棒阵列, 并利用X射线衍射(XRD)、 能量色散X射线(EDX)、 场发射扫描电子显微镜(
FESEM)和紫外 可见吸收光谱(UV Vis)表征CdSe纳米棒阵列的晶体结构和表面形貌, 考察其光电化学性能; 在标准三电极体系下, 测试CdSe纳米棒阵列电极的光电化学性能. 结果表明: 样品沿\[001\]方向择优生长, 并具有明显的光响应特性; 在光强为100 mW/cm2 的模拟太阳光照射下, 该电极光电流密度  相似文献   

12.
为有效地提高聚合物电池器件的光吸收和电荷收集, 进而提高整体器件效率, 采用氧化钼(MoO3)/银纳米粒子(Ag NPs)/氧化钼作为复合阳极缓冲层, 制备了反型聚合物太阳能电池, 并研究了在缓冲层中加入金属纳米颗粒对器件性能的影响。实验结果表明, 在MoO3缓冲层中加入1 nm的Ag时, 器件的短路电流密度和光电转换效率都得到了提高, 短路电流密度从9.54 mA/cm2增加到12.83 mA/cm2, 效率从2.14%提高到3.23%。Ag纳米颗粒的表面等离子体共振作用, 有效地提高了器件的光吸收和电荷收集, 提高了整体器件效率。  相似文献   

13.
为提高聚合物太阳能电池中有源层的光吸收,提出了一种新型结构的器件———具有多光学间隔层结构的 聚合物太阳能电池,该结构通过调节多光学间隔层折射率的分布方式,调节有源层内光电场的分布,使有源层 对入射光得到充分吸收,进而优化器件性能。采用传输矩阵法对这种多光学间隔层聚合物太阳能电池进行了 光学模拟,探索了多光学间隔层折射率的分布方式对倒置结构聚合物太阳能电池器件有源层光电场的分布和 短路电流密度( Jsc) 的影响。模拟选取的多光学间隔层是通过在ITO( Indium Tin Oxide) 玻璃衬底上依次旋涂未 掺杂ZnO 和掺杂浓度分别为0. 002 5 mol /L,0. 005 mol /L,0. 01 mol /L 的铯掺杂氧化锌( CZO: Cs doped Zinc Oxide) 薄膜制备而成的。模拟结果显示,采用从上到下铯掺杂浓度依次增加的多光学间隔层结构能有效提高 器件有源层对入射光的光吸收和短路电流密度。  相似文献   

14.
乙酸锌和草酸为原料,采用低温固相反应法制备纳米了ZnO。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR),光致发光(PL)光谱对所制备的纳米ZnO进行了表征。结果表明:制备的纳米ZnO的粒径为15~25nm左右,六方晶系纤锌矿结构,形貌为类球形。研究了改变工艺条件中研磨时间和水浴温度对合成样品的结构、形貌的影响。发现随着研磨时间的延长,样品的结晶性增强。水浴温度的变化对纳米粒子的结晶性及尺寸有一定的影响。纳米氧化锌由于其对紫外线的高吸收率和可将紫外线转换为可见光而作为近紫外LED光转换材料有着潜在的应用。  相似文献   

15.
采用溶胶旋转涂覆技术和化学水浴两步工艺法制备了ZnO阵列,研究了种晶层对ZnO阵列的形貌、晶体结构的影响,并考察了所制备的ZnO阵列用作染料敏化太阳电池光电极的光伏性能.结果表明:沿(O02)晶面择优生长的种晶层,可为ZnO阵列的有序生长起到诱导作用,尤其是当种晶层面朝下放置时,ZnO阵列基本保持了种晶的结晶取向和尺寸大小,棒状阵列直径为50100nm.由此阵列作为光电极构成的DSCs的短路电流和填充因子较低,从而使得光电转换效率处于较低水平,主要原因可能是阵列太致密、薄膜厚度小,使得染料的吸附量低所致.  相似文献   

16.
基于密度泛函理论系统下的第一性原理,对纯ZnO,Cd掺杂ZnO,Cu掺杂ZnO,Cu-Cd共掺杂以及Cu-2Cd共掺杂ZnO五个超晶胞模型分别进行几何结构优化;计算和分析了各体系的晶胞结构,能带结构,态密度以及光学性质方面的介电函数虚部,吸收率和反射率.研究结果表明:Cu,Cd单掺杂可提高ZnO的载流子浓度,改善ZnO的导电性;但Cu和Cd共掺杂ZnO时,体系的E更低,状态更加稳定.光学性质方面:Cd掺杂时,紫外区边发生红移,吸收系数略增大;当Cu单掺以及Cu和Cd共掺杂ZnO,体系在可见光和紫外波段吸收系数明显增大,使得ZnO光催化性能提升;结合Cu和Cd单掺杂的特性,说明当Cu和Cd共掺杂ZnO时,控制Cd的掺杂浓度,半导体会产生不同的透光率,因此控制Cu-Cd的比率来掺杂ZnO可用于制作不同效率的光透性器件.  相似文献   

17.
用光电流作用谱、光电流-电势图等光电化学方法研究了聚噻吩(PTh)膜和纳米结构TiO2/聚噻吩(ITO/TiO2/PTh)复合膜的光电转换性质。结果表明,PTh膜的禁带宽度为2.02eV,价带位置为-5.86 eV,导带位置为-3.84 eV。在ITO/TiO2/PTh复合膜电极中存在p-n异质结,在一定条件下异质结的存在有利于光生电子-空穴对的分离,PTh修饰ITO/TiO2电极可使光电流产生波长发生明显红移,从而提高了宽禁带半导体的光电转换效率。在实验条件下,单色光的光电转换效率最高可达到13%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号