首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
In order to investigate the elemental composition in atmospheric aerosols and its sources in the glacier area over the Tibetan Plateau (TP), seven totally suspended particle samples were collected continuously at the col of the Zhadang glacier (30°28′N,90°39′E,5800 m a.s.l.), Nyainqêntanglha Range, southern TP, from June to October 2006. Twenty-seven elements (Li, Be, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Fe, Mn, Zn, Ga, As, Rb, Sr, Y, Cd, Cs, Ba, Tl, Pb, Bi, Th, U) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The result indicates that the concentrations of most elements (especially crustal elements) are lower than values at the Nam Co Station during the same period of 2005, and also much lower than other sites in the TP such as Wudaoliang and Waliguan. This suggests that elemental compositions of aerosols in the Zhadang glacier area may represent the background levels of the middle/upper troposphere over the TP. Crustal enrichment factors (EFs) reveal that several elements (e.g. B, Zn, As, Cd, Pb and Bi) may have anthropogenic sources. The southern TP is mainly influenced by the summer Indian monsoon during the sampling period. Backward air mass trajectory analysis suggests that air masses in the region may originate from South Asia. Therefore, anthropogenic pollutants from South Asia may be transported by the summer Indian monsoon to the region which clearly affects the atmospheric environment in the southern TP during the summer monsoon season.  相似文献   

2.
Xu  YanWei  Kang  ShiChang  Zhang  YuLan  Zhang  YongJun 《科学通报(英文版)》2011,56(14):1511-1517
During the summer monsoon season,the moisture of precipitation events in southern and central regions of the Tibetan Plateau is mainly moisture from the Indian Ocean transported by the Indian monsoon and terrestrial vapor derived from the surface of the Tibetan Plateau.However,the respective contributions of these two types of moisture are not clear.From June to September,the excess deuterium values of precipitation and river water in the Nam Co basin are higher than those for the southern Tibetan Plateau.This reflects the mixing of evaporation from Nam Co and local atmospheric vapor.On the basis of theory for estimating the contribution of evaporative vapor from surface water bodies to atmospheric vapor and relative stable isotopes in water bodies (precipitation,river water,atmospheric moisture and lake water),this study preliminarily estimates that the average contribution of evaporation from the Lake Nam Co to local atmospheric vapor has varied from 28.4% to 31.1% during the summer monsoon season in recent years.  相似文献   

3.
Based on the reanalysis data from NCEP/NCAR and other observational data,interannual variability of Mascarene high(MH) and Australian high(AH) from 1970 to 1999 is examined.It is shown that interannual variability of MH is dominated by the Antarctic oscillation(AAO),when the circumpolar low in the high southern latitudes deepens,the intensity of MH will be intensified.On the other hand,AH is correlated by AAO as well as EI Nino and South Oscillation(ENSO),the intensity of AH will be intensified when EI Nino occurs.Both correlation analysis and case study demonstrate that summer rainfall over East Asia is closely related to MH and AH.When MH intensifies from boreal spring to summer (i.e.from austral autumn to winter),there is more rainfall over regions from the Yangtze River valley to Japan,in contrast,less rainfall is found over southern China and western Pacific to the east of Taiwan,and most of regions in mid-latitudes of East Asia.Compared with MH,the effect of AH on summer rainfall in East Asia is limited to localized regions,there is more rainfall over southern China with the intensification of AH.The results in this study show that AAO is a strong signal on interannual timescale,which plays an important role in summer rainfall over East Asia.This discovery is of real importance to revealingt the physical mechanism of interannual variability of East Asian summer monsoon and prediction of summer precipitation in China.  相似文献   

4.
Qi  Li  He  JinHai  Zhang  ZuQiang  Song  JinNuan 《科学通报(英文版)》2008,53(1):131-136
Based on analysis of the climatic temperature latitudinal deviation on middle troposphere, its seasonal cycle suggests that due to the rapid warming from eastern China continent to the east of Tibetan Plateau and the heating of Tibetan Plateau in spring, seasonal transition of the thermal difference between East Asia continent and West Pacific first takes place in the subtropical region with greatest intensity. On the accompanying low troposphere, the prevailing wind turns from northerly in winter to southerly in summer with the convection precipitation occurring at the same time. This maybe indicates the onset of the East Asian subtropical summer monsoon. Consequently, we advice that the seasonal cycle formed by the zonal thermal contrast between Asian continent and West Pacific may be an independent driving force of East Asian subtropical monsoon.  相似文献   

5.
Analysis of daily precipitation samples for stable oxygen isotopes (δ^18O) collected at the Shiquanhe and Gerze (Gaize, Gertse) stations in the Ngari (Ali) region on the western Tibetan Plateau indicates that air temperature affects the δ^18O variations in precipitation at these stations. In summer, Shiquanhe and Gerze show strongly similar trends in precipitation δ^18O, especially in simultaneous precipitation events. Moreover, both stations experienced low δ^18O values in precipitation during the active monsoon period, resulting from the southwest monsoon (the summer phase of the Indian monsoon). However, during the break monsoon period (during the summer rainy season, when the monsoon circulation is disrupted), δ^18O values in summer precipitation remain relatively high and local moisture recycling generally controls the moisture sources. Air temperature correlations with δ^18O strengthen during the non-monsoon period (January--June, and October--December) due to continental air masses and the westerlies. In addition, evaporation also influences the δ^18O variations in precipitation. The observed temporal and spatial variations of δ^18O in precipitation on the western Tibetan Plateau and adjacent regions show that the late May and early June-the late August and early September time frame provides an important period for the transportation of moisture from various sources on the Tibetan Plateau, and that the region of the West Kunlun-Tanggula Ranges acts as a significant climatic divide on the Plateau, perhaps for all of western China.  相似文献   

6.
The Dajiuhu Basin at Shennongjia, located within typical East Asian Monsoon region, preserves a sub-alpine sphagnum peat deposition in its central area. The topmost 120 cm of the peat covers the last 4000 years according to AMS ^14C dating of pollen concentration. Carbon isotope of a-cellulose, extracted from sphagnum peat, provides a quantitative reconstruction of atmospheric relative humidity, based on transfer functions of C3 plants carbon isotopic fractionation equation and the bryophyte photosynthesis CO2 absorption rate equation. δ^13C, TOC and C/N variations reveal that the Dajiuhu area has experienced a long-term tendency to dry during 4000-1000 aBP, with a major transition happening around 3000 aBP. Four relative dry events are identified at 3400-3200, 3000-2600, 2200-2000 and 1600-1400 aBP, respectively, corresponding to those climate events documented in many global records. Three periodicities, 664 a, 302 a and 277 a enclosed in the atmospheric humidity of Dajiuhu are correlated to the cycles of solar activities. The weakening of East Asia summer monsoon during this period registered in the Dajiuhu peat is consistent with the synchronous weakening of Indian Monsoon. This trend may be attributed to gradual decrease of Northern Hemispheric summer solar insolation and the consequently southward migration of Intertropical Convergent Zone (ITCZ).  相似文献   

7.
Recently, the Tertiary red clay sequence underlying Pleistocene loess has attracted much attention. The remarkable progress is the recognition that the Tertiary red clay sequence is also wind-blown in origin, thus providing a good opportunity to reconstruct long-term monsoon changes. In contrast to the loess deposits, the magnetic susceptibility and the pedogenic characteristics are almost independent of each other in the red clay, thus challenging the validity of the readily measurable magnetic susceptibility in describing the monsoon history recorded by the red clay. With the objective to address the long-term East Asia summer monsoon evolution, the free to total Fe2O3 ratios were calculated in a continuous eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau, which has a thickness of 305 m and a basal age of 7.0 Ma. The seven million-year Fe2O3 ratio record from the red clay-loess sequence indicates that (ⅰ) variations of the free to total Fe2O3 ratios of the loess can correlate generally with the alternations of the loess and paleosol horizons; (ⅱ) the East Asia summer monsoon was stronger as a whole in Neogene than that in Quaternary; (ⅲ) the strongest East Asia summer monsoon may occur between 4.0 and 4.8 Ma. The relatively small ice volume and high global temperature may be responsible for the strong summer monsoon during the early Pliocene.  相似文献   

8.
Yao  TanDong  Zhou  Hang  Yang  XiaoXin 《科学通报(英文版)》2009,54(16):2724-2731
The δ^18O variation in precipitation acquired from 28 stations within the network of Tibetan Observation and Research Platform (TORP) is studied, with the focus on the altitude effect of δ^18O in river water during monsoon precipitation in an effort to understand the monsoon influence on isotopic composition in annual river water. It is found that δ^18O in precipitation on the Plateau is influenced by different moisture sources, with significant Indian monsoon influence on δ^18O composition in plateau precipitation and river water. The δ^18O of water bodies in the monsoon domain is generally more depleted than that in the westerly domain, suggesting gradual rainout of southwesterly borne marine moisture in the course of long-distance transportation and lifting over the Himalayas. The lapse rate of δ^18O in river water with altitude is the largest during monsoon precipitation, due to the increased temperature vertical gradient over the southern Plateau region controlled by monsoon circulation. The combination of δ^18O in river water in monsoon (wet) and non-monsoon (dry) seasons shows a larger lapse rate than that in non-monsoon (dry) season alone. As the altitude effect of δ^18O in precipitation and river water on the Tibetan Plateau results from the combined effect of monsoon moisture supply and westerly moisture supply, the δ^18O composition and its altitude effect on the Plateau during monsoon seasons should be considered in the reconstruction of paleoelevation of the Tibetan Plateau.  相似文献   

9.
Analyzed results of the atmospheric wind speedand stable isotopic data (δ^18O) in summer precipitation atBangkok, Bombay, New Delhi, Kunming and Lhasa, the IAEA/WMO stations, indicate that δ^18O in monsoon pre-cipitation correlate positively to wind speed and that thereexists a monsoonal vapor layer over these monsoon-controlled areas during monsoon seasons. The isotopic ex-change happens between monsoon vapors and failing rain-drops in the layer, resulting in this correlation between δ^18O and wind speed. This suggests that wind speed is probablyone of key factors affecting the δ^18O variation besides air temperature and rainfall in the southwest monsoon domain.  相似文献   

10.
To study the long-term variation of the East Asian summer monsoon (EASM), the Asian-Pacific Oscillation index (IAPO), representing a zonal thermal contrast between Asia and the North Pacific, is reconstructed over the past millennium. During the Little Ice Age (LIA), the variability of the reconstructed IAPO is closely linked to dry-wet anomalies in eastern China on the centennial scale. This correlation pattern is consistent with the observation during the current period, which suggests that the reconstructed IAPO may generally represent the centennial-scale variation of the EASM and rainfall anomalies over eastern China during the LIA.  相似文献   

11.
Considering the different uplifting time of different subregions of the Himalaya-Tibetan Plateau(TP),a series of numerical simulations have been conducted with the Community Atmosphere Model(CAM4) developed at the National Center for Atmospheric Research to explore the effects of the phased tectonic uplift of the Himalaya-TP on the evolution of Asian summer monsoons.The results show that the uplifts of the Himalaya and northern TP significantly affect the evolutions of South Asian summer monsoon and northern East Asian summer monsoon respectively.That is,the tectonic uplift of the Himalaya intensifies the South Asian summer monsoon circulation and increases the precipitation in South Asia,whereas the uplift of the northern TP intensifies the northern East Asian summer monsoon circulation and increases the precipitation in northern East Asia.Compared with previous simulations,current comparative analyses of modeling results for different subregional uplifts within the Himalaya-TP help deepen our understanding of the evolutionary history of Asian monsoons.  相似文献   

12.
The average mass concentration of the aerosols in Beijing during the dust storm in the spring of 2000 was ~6000 mg·m-3, ~30 times as high as that in the non-dust storm days. The enrichment factors of the pollution elements As, Sb and Se were higher than those in the non-dust storm days. This indicated that As, Sb and Se resulted from the pollution sources of those areas, through which the dust storm passed during their long-range transport, in addition to the local pollution sources in Beijing. The enrichment factors of the Pb, Zn, Cd and Cu were much less than those in the non-dust storm days, suggesting that the local pollution sources in Beijing area contributed to them mostly. The enrichment factors of elements Al, Fe, Sc, Mn, Na, Ni, Cr, V and Co were close to 1, showing that these elements originated from crust. The concentration of S in the dust storm was ~10 mg·m-3, 4 times as high as that in non-dust storm. S in the aerosols resulted from the adsorption of gaseous SO2 and the consequent transformation on it. The aerosols of the dust storm contained 16.1% and 76.9% of fine particles with the sizes less than 2.1 and 9.0 mm, respectively, while it had a large number of coarse particles. It was noted that a considerable portion of Fe(Ⅱ) was detected from the dust storm. Fe(Ⅱ) could easily dissolve in seawater to be nutrient for phytoplankton and would lead to the increase of the emission of dimethylsulfide (DMS) from the ocean. The feedbacks of Fe coupled with S in atmosphere might be the important mechanism that would affect the primary productivity in Pacific and/or the global climate change.  相似文献   

13.
In September 1997, a 15-m firn core was recovered from an elevation of 7 000 m a. s.l. from the Dasuopu Glacier in the central Himalayas. The analysis of δ18O values and major ion (Ca2+ , Mg2+ , NH4+ , SO42- and NO3-) concentrations shows that average annual accumulation is 0.75 m (water equivalent) in the Dasuopu firn core. The seasonal variations of δ18O values and major ion concentrations in the core indicate that present summer monsoon and dust signals are recorded with high-resolution in the Dasuopu Glacier. δ18O in precipitation are controlled by amount effect in summer monsoon season, more negative δ18O is representative of summer monsoon signal in snow layers. Higher concentrations of Ca2+ , Mg2+ , SO42- and NO3-are dominated by spring dust storm imput derived from the arid and semi-arid desert regions in central Asia. Also EOF analysis verifies that high spring concentrations of major ions are consistent. Due to the possibly different sources, the secondary variations of NH4+ and NO3- are negatively relevant with that of Ca2+ and Mg2+ .  相似文献   

14.
The modern atmospheric observation and literatural historical drought-flood records were used to extract the inter-decadal signals of dry-wet modes in eastern China and reveal the possible relationship of global and China temperature changes associated with the East Asian summer monsoon advances.A climate pattern of "wet-north and dry-south" in eastern China and cool period in China and globe are associated with the strong summer monsoon that can advance further to the northernmost part in the East Asian monsoon region.On the contrary,a climate pattern of "dry-north and wet-south" in eastern China and a warm period in China and globe are associated with the weaker summer monsoon that only reaches the southern part in the region.An interdecadal oscillation with the timescale about 60 years was found dominating in both the dry-wet mode index series of the East Asian summer monsoon and the global temperature series after the secular climate states and long-term trend over inter-centennial timescales have been removed.  相似文献   

15.
Forty-two climate models participating in the Coupled Model Intercomparison Project Phases 3 and 5 were first evaluated in terms of their ability to simulate the present climatology of the East Asian winter (December-February) and summer (June-August) monsoons. The East Asian winter and summer monsoon changes over the 21st century were then projected using the results of 31 and 29 reliable climate models under the Special Report on Emissions Scenarios (SRES) mid-range A1B scenario or the Representative Concentration Pathways (RCP) mid-low-range RCP4.5 scenario, respectively. Results showed that the East Asian winter monsoon changes little over time as a whole relative to the reference period 1980-1999. Regionally, it weakens (strengthens) north (south) of about 25°N in East Asia, which results from atmospheric circulation changes over the western North Pacific and Northeast Asia owing to the weakening and northward shift of the Aleutian Low, and from decreased north- west-southeast thermal and sea level pressure differences across Northeast Asia. In summer, monsoon strengthens slightly in East China over the 21st century as a consequence of an increased land-sea thermal contrast between the East Asian continent and the adjacent western North Pacific and South China Sea.  相似文献   

16.
There is a scientific debate on the relationship between ancient winter and summer monsoons in East Asia. Some scholars think that East Asian winter and summer monsoons are anti-correlated, and others think not. For this reason, this study is motivated to assess their linkage from the paleoclimate simulation perspective, through analyzing the Last Glacial Maximum (LGM) and mid-Holocene (MH) climate simulated by CCSM3 model. Compared to the present climate, the Aleutian low is found to be deepened and the East Asian winter monsoon (EAWM) is stronger during the LGM winter. The Pacific high in summer is noticed to be weakened and the East Asian summer monsoon (EASM) is weaker at the LGM. During the MH, the Aleutian low and the Asian high in winter are intensified, and the Asian low and the Pacific high in summer are enhanced, indicating that the EAWM and EASM are both stronger than today. Therefore, the EAWM is not always negatively correlated to the EASM. Their relationship may be different at different geological stages. It can be obtained at least from the numerical simulation results that the EAWM and the EASM is negatively correlated during the cooling period, while positively correlated during the warming period.  相似文献   

17.
Based on the climate records derived from loess deposits in north-central China, the characteristics of the East-Asia paleomonsoonal changes during the Late Pleistocene are summarized as follows: (ⅰ) The 0.1_Ma climate period is predominant in both summer and winter monsoonal changes over East Asia; (ⅱ) The East-Asia monsoonal variation is different from the Indian monsoon during the Late Pleistocene; (ⅲ) There is a ~5_ka time lag of the East-Asia monsoon changes relative to the theoretically calculated solar radiation changes; (ⅳ) There is a general trend toward increase in winter monsoon and decrease in summer monsoon in the last glaciation; (ⅴ) In the East-Asia monsoonal region, the amplitude of glacial-to-interglacial cycles shows a remarkable increase from south to north. To explain these characteristics, a conceptual model is developed and the forcing of global ice volume variations in the monsoonal history is emphasized.  相似文献   

18.
Dust aerosol is one important component of atmos-pheric aerosols, and plays important roles in the Earth’s climate system and the biogeochemical cycle. Large amounts of dust aerosols produced from windblown soils and deserts are emitted annually into the atmosphere and transported over long distance to downwind land and ocean areas[1]. The deserts and desertification soils in northern China are important sources of East Asia dust aerosols. It is estimated that 800 Mt of dust aerosols emit-t…  相似文献   

19.
Climate extremes and changes in eastern China are closely related to variations of the East Asian summer monsoon and corresponding atmospheric circulations.The relationship between frequencies of temperature and precipitation extremes in China during the last half century is investigated using Singular Value Decomposition analysis.During 1980-1996,there was a typical pattern with fewer hot days and more precipitation extremes in the northern part of eastern China,and more hot days and fewer precipitation extremes in the southern part.This geographic pattern tended to reverse after 1997,with fewer hot days and more extreme precipitation days south of the Yangtze River and vice versa to the north.Differences in atmospheric circulation between the former and latter periods are presented.We conclude that a mid-level anomalous high/low,upper-level anomalous easterlies/westerlies over the north/south of eastern China,a weakened East Asian summer monsoon and associated upper-tropospheric center of cooling(30°N,110°E) are all favorable for the changes in frequencies of temperature and precipitation extremes.  相似文献   

20.
Great progress in study on aerosol and its impact on the global environment   总被引:9,自引:0,他引:9  
The transport from atmosphere is a more important pathway than that from rivers for certain elements and compounds in the remote ocean. The desert and those arid/semi-arid areas in the northwest of China and the Loess Plateau are the sources of those aerosols over the Pacific. Atmospheric iron is the limiting factor of the productivity in certain ocean regions. The dust storms must now be seen as repeated sources of pollution elements as well as soil elements to the East China Sea and, farther out, to the North Pacific Ocean and even to the USA. The long-range transport of aerosols, especially the dust storm, from China and the positive feedbacks of iron coupled with sulfur in atmosphere might be one of the important mechanisms that would affect the primary productivity in the Pacific and/or the global climate change and deserve to be further studied. It can be seen clearly that the dust storms would affect not only the health of human beings and the local or regional climate, but also the global climate change that has been the focus of environmental study internationally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号