首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
考虑煤岩面割理和端割理两个方向不同渗流性质,建立了煤岩割理正交各向异性数学模型,通过引入煤岩弹性模量折减系数解决了煤岩割理刚度较难测定的问题。基于该模型对鄂尔多斯盆地东部煤层单井产能进行了模拟计算,分析了割理渗透率正交各向异性系数、煤层厚度、煤层孔隙度和含气量等参数对煤层单井产能的影响规律。计算结果表明:煤层气单井产能随着渗透率正交各向异性系数、煤层厚度和含气量增加而增大,随着煤层孔隙度的增加而减小。  相似文献   

2.
考虑煤岩面割理和端割理两个方向不同渗流性质,建立了低渗透性煤层气水固三相流固耦合模型,利用该模型分析了沁水盆地煤层气井在开采过程中压力及解吸半径变化规律,并对影响煤层压力的割理参数进行分析.计算结果表明:非耦合模型比耦合模型的解吸面积要大;随着煤岩割理渗透率正交各向异性系数的增大,煤层面割理方向解吸半径逐渐增大,而煤层端割理方向解吸半径逐渐减小;面割理方向,随着割理渗透率正交各向异性系数和割理宽度的增大,煤层压力先增加后降低;端割理方向,煤层压力随着渗透率正交各向异性系数、割理密度和割理宽度的增大而增大.  相似文献   

3.
 煤渗透率是研究瓦斯渗流特性及运移规律的关键参数, 而煤体结构各向异性导致渗透率具有明显的方向性。利用煤岩瓦斯渗流试验系统, 对不同变质程度煤样试件在面割理和端割理方向上, 进行不同瓦斯压力下的渗透率测试, 并根据等效驱替原理, 建立各向异性煤体渗透率的计算模型, 数值分析了煤体渗流的定向性特征。结果表明:在煤体面割理和端割理方向, 渗透率均随瓦斯压力增大成负指数减小;面割理方向的瓦斯渗透率与端割理方向相差可超过1 个量级, 且煤的变质程度越高, 差别越明显。随瓦斯压力增大, 煤的瓦斯渗流定向性系数峰值增大, 煤层瓦斯渗透定向性增强。在相同瓦斯压力下, 煤的变质程度越低, 煤层瓦斯渗透定向性越弱。  相似文献   

4.
煤岩是由有机质和无机矿物组成的复杂不均匀多孔介质,非均质性较强,目前研究鲜有考虑煤岩力学非均质性对煤岩渗透率与孔隙度时空演化规律的影响.基于Weibull概率密度分布函数表征煤岩弹性模量的非均质性,建立了考虑煤岩内甲烷解吸引起的气压变化、线性热膨胀效应和煤岩骨架收缩变形的热流固耦合三维有限元模型,通过煤岩渗透率与孔隙度与温度场、应力场和压力场间的交叉耦合关联式,分析了非均质度下煤岩表征单元体内渗透率与孔隙度参数的变化规律.结果表明:煤岩力学非均质性是影响煤岩渗透率与孔隙度分布的重要因素之一,非均质煤层的渗透率与孔隙度分布呈现出明显的波动震荡特征,在不同位置处的孔渗参数大小不等;随着井眼距离增加,渗透率和孔隙度可能呈现与均质煤岩情况恰好相反的变化趋势.因此,煤岩的孔隙度与渗透率演化是一个复杂的热流固耦合过程.研究结果对指导煤层气高效开采具有重要的理论意义.  相似文献   

5.
煤储层渗透性是影响煤层气开发选区和产量最重要的因素,运用资料查阅、文献综合研究等方法,分析了煤层变质、煤层厚度、煤体结构、构造曲率等因素与煤储层渗透率之间的耦合关系,结果表明,煤储层具有双重孔隙结构,割理裂隙的发育程度直接影响煤层渗透率的大小,天然裂隙的发育密度与煤岩类型条带或分层厚度呈负相关。  相似文献   

6.
在煤层气储层渗透性影响因素的分析基础上,通过煤层地应力、热演化程度、埋藏深度与渗透率的相关性分析,探讨渗透率的发育机理,认为煤储层渗透率是煤阶与地应力联合作用的结果,地应力控制煤储层割理开启程度和方向,改变储层的孔隙结构;煤岩热演化通过改变岩石力学性质来控制割理发育,二者共同控制煤储层割理的大小,进而影响煤储层渗透率的发育,而埋藏深度与渗透率相关性不强.选取煤层渗透率主控因素进行研究,以鄂尔多斯盆地东缘二叠系煤层气储层为例,利用多元回归分析的方法建立了“煤阶与地应力”渗透性二元预测模型,对研究区渗透率的发育情况进行了预测.研究表明,地应力控制了渗透率的分布,而煤岩热演化程度对渗透率分布起到一定的调节作用,煤层气储层高渗区主要分布在研究区斜坡带地应力松弛部位,而在应力相对集中深部煤储层为低渗区.  相似文献   

7.
为提高煤层气井单井产能,有必要弄清气井产量下降阶段时间的长短,递减速率的快慢,遵循何种递减类型等.在研究柿庄南煤层物性的基础上,结合区块内43口进入递减期的典型气井,利用Aprs递减分析方法,拟合出各井的递减模型,计算出各井的递减速率,从气藏地质和气藏工程两个角度研究煤层气井产量递减的控制因素.结果表明,煤层气井产量以指数递减和调和递减为主,初始递减率较小.影响煤层气单井产能的气藏地质因素主要包括煤层厚度、孔隙度、渗透率、相对渗透率、含气量、吸附常数、煤层压力和临界解析压力;气藏工程因素主要包括井底流压、表皮因子、边界半径和裂缝参数.  相似文献   

8.
煤储层渗透率为动态渗透率,是煤层气开发过程中需要重点考虑的储层参数之一.该文从煤储层渗透率变化的控制机制出发,采用数学模型,模拟分析了煤层气井排采过程中原位储层条件下煤渗透率动态变化特征.并探讨了初始割理压缩系数、割理压缩系数降低率、基质收缩系数、初始割理孔隙度以及临界解吸压力对煤储层渗透率变化的影响.模拟结果对于认识煤储层渗透率动态变化具有一定参考价值.  相似文献   

9.
为了准确了解煤岩井壁稳定性及坍塌规律,基于3DEC离散元软件,完成了对煤层井壁稳定的仿真模拟分析,验证了3DEC离散元软件应用于煤岩井壁稳定研究的可行性和相对于弹性力学连续性介质理论的优越性。考虑到简化计算和边界效应,物理模型采用内外双重建模;为更好地反映煤岩井周割理情况,内层模型采用离散型裂隙网络(discrete fracture network,DFN)技术。通过与不考虑割理面的弹性力学连续介质模型对比,验证了割理发育对煤岩井壁稳定的影响;通过位移云图来评价煤岩直井和水平井的井壁稳定性和垮塌掉落情况,且三维模型直观地展示了井壁失稳过程;完成了有效液柱压力、割理和井眼走向对煤岩井壁稳定的影响分析,得出结论:随着有效液柱压力的增大,井壁稳定性越来越强;割理尺寸、密度和产状的情况对井壁稳定仿真模拟影响巨大,模拟前应充分统计割理分布情况;在所设条件下,沿最大水平主地应力方向的水平井较直井更加稳定。  相似文献   

10.
探讨提高煤层气采收率的间接压裂新方法。根据煤体基质岩块与裂缝的渗流物性规律,以及常规水力压裂又很难适应煤层的特殊地质特性,提出在煤层相邻的砂岩部位进行压裂构想。其机理是煤岩的裂缝传导率差,易被压碎产生煤粉且有突出的各项异性、应力集中的特点,煤层中的面割理垂直于煤层,垂向渗透率通常高于水平渗透率,面割理的方向性使煤层与间接压裂诱导水力裂缝自动沟通,形成高传导渗流通道,从而促进煤层气的解吸和渗流。  相似文献   

11.
针对煤层多重孔隙系统空间非连续分布、力学属性各向异性的特点,综合考虑注气强化开采过程中多组份多过程物质运移特征,构建了正交各向异性等效连续煤层流固耦合模型,据此进一步剖析了煤层各向异性力学性质及其对孔渗参数与注采能力的影响。煤层各向异性的力学属性,导致开发过程中储层水平应力与应变的动态变化存在明显的方向性特征,沿力学强度或杨氏模量大的方向变化相对较大,进而带来裂缝宽度、渗透率及其变化的方向性差异,同时致使孔隙度、渗透率以及气体吸附浓度空间分布的非均质性,最终造成与横观各向同性介质不同的煤层气生产与CO2注入预测结果。研究成果对煤层气开发过程中孔渗参数及注采能力的准确预测具有重要意义。  相似文献   

12.
流固耦合作用下注气开采煤层气增产规律研究   总被引:4,自引:1,他引:3  
提高低渗透煤层气产量是我国煤层气开采中急需解决的关键问题,加速煤层甲烷解吸过程的注气增产方法是提高低渗透煤层气产量的有效途径。由于排采降压在孔隙流体压力变化的范围内会引起储层孔隙介质的应力和应变的变化,造成有效渗透率和孔隙度的降低,同时也影响注气和产气的动态参数。研究这些规律,首先建立了注气开采煤层气多组分流体扩散渗流的流固耦合模型,利用数值方法研究了注气开采煤层气的增产机理。研究表明,注入二氧化碳气体不但减少了煤层甲烷的分压.加速了煤层甲烷的解吸;而且二氧化碳气体比甲烷气体更易吸附,竞争吸附置换煤层甲烷分子,从而提高了煤层气产量,同时必须重视耦合作用对注气增产造成的不利影响。  相似文献   

13.
煤层气井产气规律及产能影响因素分析   总被引:1,自引:1,他引:0  
任建华 《科学技术与工程》2013,13(10):2799-2802
煤层气是一种重要的非常规资源。煤层气的开采首先需要将储层中的水排出,降低储层压力使吸附气解吸产出。采用数值模拟方法分析了煤层气压降开采过程,并利用实际储层特征建立地质模型,对单井生产历史进行拟合,拟合效果较好。应用上述所建立的模型分析了裂缝渗透率、孔隙度以及最小井底流压对煤层气井产气变化规律以及峰值时间的影响。  相似文献   

14.
煤层渗透率动态变化规律是煤层气开发所面临的重点问题之一。根据无因次产气率划分煤层气井排采阶段,结合等温吸附实验下煤层气的解吸过程确定排采阶段分界点位置。通过物质能量动态平衡理论建立中煤阶煤储层渗透率评价模型,从渗透率变化趋势、主导机制、产能动态等方面,阐释了中煤阶煤层气井不同排采阶段煤储层渗透率动态变化特征与控制机理。结果表明,排采过程中,煤储层绝对渗透率发生“先降低-后回返-再上升”的动态变化。排水阶段水相有效渗透率迅速下降,气相有效渗透率为0。储层压力降低至临界解吸压力后进入产气阶段,气相有效渗透率迅速增加,水相有效渗透率缓慢降低。产气量衰减阶段绝对渗透率开始下降,在滑脱效应影响下,气相有效渗透率仍然保持缓慢上升,水相有效渗透率降低。  相似文献   

15.
单井间歇注气开采煤层气生产过程分析   总被引:2,自引:1,他引:1  
描述了注气开采煤层气生产过程,分析表明间歇注气生产模式的增产机理主要是竞争吸附置换,而边注边采生产模式主要是驱替;反映基质孔隙扩散能力的综合传质系数不仅影响煤层气井的生产能力,而且影响矿井煤与瓦斯的突出;建立了单井间隙式注气开采煤层气的扩散渗流数学微分方程组;注气过程和采气过程渗流方程式形式相同,但质量源的流向不同,生产井内的边界条件不同.  相似文献   

16.
In No. 3 coalseam of Chengzhuang Coalmine of Jincheng City, there exists the visible fracture system consisting of joints, gas-expanding fractures and cleats. The gas-expanding fractures develop mainly in the bright coal sub-layer and cleats, in the vitrain and bright coal. The joints fall into two types, one developing in the coalseam and the other cutting through the whole coalseam and entering into the top and bottom rock layer. The development direction of joints is basically similar to that of gas-expanding fractures: NNE and NNW. The formation of the visible fracture system is classified as the stage of the development of cleat fissures in the coalification period, the stage of the full development of cleats and the formation of gas-expanding fractures in the second coalification period and the stage of the formation of joints by structural function. There is the spatial unhomoge-neity in three dimensions for the visible fracture system of the coal seam in Chengzhuang Coalmine: the regular distribution of the visible fractures as groups in the plane and the coal sub-layer with high permeability rate in profile. The research findings of the visible fracture system of coal seam can be applied to the drilling of the coalbed methane and to heightening the let-off efficiency of coalseam gas.  相似文献   

17.
深部煤层瓦斯运移过程及分布规律与温度场、瓦斯渗流场及应力场耦合密切相关.基于深部煤层瓦斯运移的热流固耦合模型,结合实际的煤层条件和实测数据,开展了煤层瓦斯赋存规律的数值模拟,研究了瓦斯压力和瓦斯含量分布规律的影响因素.结果表明:煤层渗透率是影响瓦斯压力分布的主要因素,其中煤体的有效应力系数、初始孔隙率、弹性模量以及吸附应变系数均对渗透率有着重要的影响;煤层瓦斯含量受瓦斯压力和煤层温度的共同影响,不考虑煤层温度预测得到的瓦斯含量结果偏大.  相似文献   

18.
 在考虑煤层气的解吸和扩散效应及启动压力梯度的基础上,对低渗透煤层气藏流体输运特性进行分析,建立了低渗透煤层气水两相非线性渗流数学模型,推导出非线性渗流阶段气水两相的控制方程组。通过实例计算表明,液相拟启动压力梯度从0.001MPa/m增加至0.007MPa/m,煤层产气峰值下降约15%;不考虑启动压力梯度时的产气峰值量要比液相拟启动压力梯度为0.001MPa/m的产气峰值提升约7%。因此启动压力梯度的存在阻碍了裂隙中流体的流动,对煤层气开发影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号