首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
高温性能和倍率性能的改善是混合动力车用MH/Ni电池实用化中的关键问题. 采用目前3种广泛使用的β-Ni(OH)2制造了容量为6 Ah的D型电池,对比研究了3种电池在常温及60 ℃下的充放电性能,同时结合材料的微结构分析得出包覆4.5%Co(OH)2的β-Ni(OH)2综合性能较佳.  相似文献   

2.
采用微波辅助水热法制备了均匀分级的氢氧化镍(Ni(OH)2)微球,通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对Ni(OH)2的组成和形貌进行了表征. Ni(OH)2微球的平均直径约1.6 μm,复杂的花状结构使其具有较大的比表面积.将微球制备成Ni(OH)2修饰的玻碳电极,并将其用于0.1 mol/L NaOH溶液中尿酸(UA)的检测,该电极具有良好的电催化活性.这种传感器表现出较宽的线性范围(0.1~1.5 mmol/L)和高灵敏度(475.71 μA ·L/(mmol ·cm2)),且有较低的检出限(1.8 μmol/L).利用电化学测试对内源性干扰物进行检验,发现Ni(OH)2微球修饰电极对UA的选择性较好.结果表明:Ni(OH)2微球在研发无酶尿酸传感器方面具有重要的应用潜力.  相似文献   

3.
通过水热法和浸渍法合成了铂单原子质量分数高达3.00%的铂单原子/缺陷Ni(OH)2纳米带/氮掺杂石墨烯(PtSAs/D-Ni(OH)2/NG)催化剂.通过像差校正高角度环形暗场扫描透射电镜(AC-HAADF-STEM)和X线吸收光谱(XAS)对Pt单原子进行了表征.采用循环伏安法和计时电流法研究了PtSAs/D-Ni(OH)2/NG对葡萄糖的电化学性能.基于PtSAs/D-Ni(OH)2/NG的电化学传感器表现出高灵敏度(439.47μA·mmol-1·L·cm-2)、优异的选择性、低检测限(2.00μmol·L-1)和良好的稳定性.PtSAs/D-Ni(OH)2/NG对葡萄糖的高催化活性可归因于Pt原子和Ni原子之间的协同催化作用.  相似文献   

4.
通过模拟拜耳法晶种分解过程研究了铝酸钠溶液中Al(OH)3对草酸盐的吸附平衡和动力学行为,并考察了草酸盐初始浓度和Al(OH)3粒度对吸附的影响规律. 结果表明:Al(OH)3对草酸钠有较大的吸附能力,随草酸钠浓度的升高和Al(OH)3粒度的细化,草酸钠吸附率随之升高,达到平衡的时间也相应缩短;不同粒度Al(OH)3的吸附能力不同,这跟Al(OH)3的比表面积有很大关系;Al(OH)3对草酸钠的等温吸附符合Freundlich模型,吸附动力学符合准二级动力学方程,吸附行为为多分子层吸附,同时存在物理和化学吸附过程.  相似文献   

5.
以甲基巯基四氮唑和巯基嘧啶为硫源, 用溶剂热合成法原位合成两个纯无机羟基硫酸盐骨架: [Cu3(SO4)(OH)4]n(1)和[K2Co3(OH)2(SO4)3(H2O)2]n (2). 在化合物1中, 一维带状折叠—Cu3(OH)4—阳离子链被硫酸根连接形成三维羟基硫酸铜骨架; 在化合物2中, 一维折叠Co3(OH)2阳离子链被硫酸根连接形成二维羟基硫酸钴阴离子骨架, 该阴离子骨架进一步被K+连接形成三维双金属纯无机骨架, 在该三维结构中存在K+传输通道. 实验结果表明, 有机硫作为硫源为合成羟基硫酸盐提供了一种新策略.  相似文献   

6.
首先,阐述图论中树被推广为新的树-域表示,其包含树和域2部分,且域是众多小树的集合,其二者可以互相转化,是简单性(树)和复杂性(域)的统一,可以用于分析科学、政治、经济、哲学、历史等各方面的复杂系统.进而推广它到整个图论G=(V,E,F),域F是小图的集合.其次,探讨物理理论积分形式的统一和Dirac开方法推广到任意项A2=B2+C2+D2+…开方为A=αB+βC+γD+…,其中α222=…=1.最后,探索一般的复杂性.  相似文献   

7.
We report the electrochemical performance of Ni(OH)2 on a gas diffusion layer (GDL). The Ni(OH)2 working electrode was successfully prepared via a simple method, and its electrochemical performance in 1 M NaOH electrolyte was investigated. The electrochemical results showed that the Ni(OH)2/GDL provided the maximum specific capacitance value (418.11 F·g?1) at 1 A·g?1. Furthermore, the Ni(OH)2 electrode delivered a high specific energy of 17.25 Wh·kg?1 at a specific power of 272.5 W·kg?1 and retained about 81% of the capacitance after 1000 cycles of galvanostatic charge–discharge (GCD) measurements. The results of scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed the occurrence of sodium deposition after long-time cycling, which caused the reduction in the specific capacitance. This study results suggest that the light-weight GDL, which can help overcome the problem of the oxide layer on metal–foam substrates, is a promising current collector to be used with Ni-based electroactive materials for energy storage applications.  相似文献   

8.
A technique for recycling spent nickel-cadmium batteries, which makes separaion of cadmium and nickel possible, is developed by laboratory-scale experiments. NH3-H2CO3 aqueous solution was used in this leaching technique. Since neutralization and/or solvent extraction were not required in the separation procedure of nickel and cadmium, the closed systemizaion of the process becomes possible. Experimental results show that, (1) if the NH3 concentraion of leaching solution is sufficiently high and the ratio of H2CO3 to NH3 is properly adjusted, both Ni(OH)2 and Cd(OH)2 react with NH, and quickly dissolve into leaching solution, and (2) Ni(OH)2 can be converted into insoluble NiO by calcination at 500℃, and CdO from Cd(OH)2 by calcination maintains good solubility in NH3-H2CO3 aqueous solution. As a conclusion, the recycling technique characterized by two step leaching can be developed based on such changes in dissolution behavior by calcination. Meanwhile, the yields of 99.8% for nickel and 97.6% for cadmium are obtained, and the purities of recovered nickel and cadmium are 99.9% and 98.6%, respectively.  相似文献   

9.
以3-(1H-四氮唑-1-乙酸酰胺)吡啶(TAAP)、 Anderson型多金属氧酸盐和氯化铜为原料, 用水热合成方法制备一种新的基于四氮唑配体(HTrz=1H-四氮唑)和Anderson型多酸的铜配合物{H2Cu12(Trz)12[CrMo6(OH)6O182(OH)8(H2O)4}·12H2O. 晶体结构解析表明: 该化合物先由去质子化的四氮唑配体Trz通过铜离子连接形成金属 有机二维层, 再通过多酸阴离子[CrMo6(OH)6O18]-3-端氧连接二维层上的铜离子形成三维框架结构; 在水热合成过程中配体TAAP原位转化成Trz. 合成的配合物对H2O2有良好的电催化还原效果, 在紫外光下对亚甲基蓝和结晶紫有良好的催化降解效果.  相似文献   

10.
以3-(1H-四氮唑-1-乙酸酰胺)吡啶(TAAP)、 Anderson型多金属氧酸盐和氯化铜为原料, 用水热合成方法制备一种新的基于四氮唑配体(HTrz=1H-四氮唑)和Anderson型多酸的铜配合物{H2Cu12(Trz)12[CrMo6(OH)6O182(OH)8(H2O)4}·12H2O. 晶体结构解析表明: 该化合物先由去质子化的四氮唑配体Trz通过铜离子连接形成金属 有机二维层, 再通过多酸阴离子[CrMo6(OH)6O18]-3-端氧连接二维层上的铜离子形成三维框架结构; 在水热合成过程中配体TAAP原位转化成Trz. 合成的配合物对H2O2有良好的电催化还原效果, 在紫外光下对亚甲基蓝和结晶紫有良好的催化降解效果.  相似文献   

11.
The electronic structures of atom clusters NiTO12H12^2+ and NiTO12H9^- of β-Ni(OH)2 were calculated by quantum chemical DV-Xα method. By analyzing the state densities, orbital populations, net charges and electric charge density differences of the selected clusters, it was indicated that β-Ni(OH)2was not typical ionic crystal, and the bonds between Ni and O atoms had obvious covalent characteristics. The bonds between H atom and other atoms in the crystal structure were weaker, which ensured that H atoms can easily deintercalate and intercalate into β-Ni(OH)2. The structure of β-Ni(OH)2 was not changed by moderate de-intercalation of H atoms. However, with the excessive de-intercalation of H atoms, the structure of β-Ni(OH)2 changed and the electrochemical active properties were reduced.  相似文献   

12.
为了改善铝代α-Ni(OH)2的电化学性能,用共沉淀法合成了含不同配比Al3+、Co3+的Ni(OH)2.样品经CT、XRD、FTIR、SEM等表征为α-Ni0.8CoxAl0.2-x(OH)2.2-0.5y(CO3)y.zH2O.恒电流充放电和微电极CV等测试表明:Co3+的摩尔分数在0.02~0.04时,合成的样品作为氢镍电池的正极材料,在放电比容量、电极可逆性和稳定性等方面均得到改善.Co3+发挥了稳定α相结构、增强导电性等多重作用.  相似文献   

13.
采用脱合金化、水热合成和化学气相沉积制备纳米多孔Co、NiCo(OH)2/Co和NiCo(OH)2-P复合电极. 通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)等方法表征电极材料的物相和形貌结构. 在1 mol·L-1的KOH溶液中,运用线性扫描伏安曲线(LSV)、交流阻抗谱(EIS)、循环伏安曲线(CV)等测试电极的电催化析氢性能. 结果表明:纳米多孔Co、NiCo(OH)2/Co、NiCo(OH)2-P电极材料的析氢性能依次增加,化学气相沉积(CVD)磷化后的纳米多孔NiCo(OH)2-P在10 mA·cm-2电流密度下,其过电位为139 mV,Tafel斜率为123.57 mV·dec-1,双电层电容为30.16 mF·cm-2. 经过1 000圈循环伏安耐久性实验后,纳米多孔NiCo(OH)2-P电极在10 mA·cm-2电流密度下,析氢过电位仅相差7 mV,表现出良好的析氢稳定性.  相似文献   

14.
本文研究了用于光电化学电池(PEC)中的n型TiO_2-Ni半导体复合电极的制备方法和特性.实验采用了上流循环沉淀共沉积复合镀复和常压氮气氛还原新工艺.获得了制备n型TiO_2半导体复合电极的最佳工艺条件,并在沉淀共沉积复合镀机理研究中引入颗粒床电极模型.对TiO_2-Ni复合电极的电化学和光电化学特性进行了测试,发现了半导体复合电极的一些新特点.并据此对TiO_2半导体电极的应用与发展做了估价.  相似文献   

15.
采用感应熔炼结合粉末烧结两步法制备了La_(0.7)Mg_(0.3-x)Ca_xNi_(2.5)Co_(0.5)(x=0~0.15)储氢合金,并对合金的放电容量衰退机理进行了研究.研究结果显示随着Ca含量的增加,合金的相结构没有发生明显变化,只是晶胞参数逐渐增大,即Ca主要替代了超晶格结构AB2结构单元中的Mg,但在AB5结构单元中少量的Ca恰恰对合金的放电容量产生了重要的影响.Ca在AB2和AB5两种结构单元中的存在会降低储氢过程中晶胞内部的膨胀应力,Ca的溶解能够抑制Mg的腐蚀,生成微溶于水的腐蚀产物,并提高了合金表面具有催化活性的Ni含量,改善了合金的循环寿命.较高的Ca含量会严重破坏合金的相结构,生成过量的腐蚀产物因不能完全溶于水而在合金表面形成包覆层,阻碍了电极反应,造成合金循环过程中放电容量的急剧下降.  相似文献   

16.
本文研究了铜阳极在纯NaOH溶液中的电化学钝化行为。实验发现,在电极上生成不溶Cu_2O及CuO,使电极发生钝化。论文还详细讨论了生成Cu_2O钝化膜的机理。  相似文献   

17.
通过XRD和循环伏安法研究了添加钙对氢氧化镍结构和电化学性能的影响。其中钙是以离子的形式对氢氧化镍掺杂。结果表明:添加了钙的氢氧化镍的晶粒尺寸变小,比表面积增加,晶体缺陷和畸变增多,提高了质子的传递能力和活性物质的利用率,其中以共沉淀方式添加1%钙的氢氧化镍电极的电化学性能最佳。  相似文献   

18.
本文研究以苄基十四烷二甲基氯化铵与氯化汞络阴离子的缔合物为活性物质制备成PVC膜汞离子选择电极,其响应线性范围为10~(-5)—10~(-1)mol·L~(-1),斜率为29mV/decade。对电极的响应机理进行了研究。  相似文献   

19.
采用二次干燥的化学共沉淀法制备出了Co-Al共掺杂的高密度锂离子电池正极材料前驱体Ni0.8Co0.2-xAlx(OH)2(X=0,0.05,0.1,0.15,0.2).研究了不同Co-Al的掺杂比例,NaOH溶液的浓度、滴定速率、烘干方式等因素对前驱体振实密度的影响.XRD分析表明,不同掺杂比例的Ni0.8Co0.2-xAlx(OH)2均为六方层状的β型结构,晶型结构规整.充放电测试表明以此前驱体与LiNO3反应制得的LiNi0.8Co0.15Al0.05O2材料具有良好的电化学性能.  相似文献   

20.
Co-substituted α-Ni(OH)2 was synthesized by a novel microwave homogeneous precipitation method in the presence of urea. LiNi0.8Co0.2O2 cathode material was synthesized by calcining Co-substituted α-Ni(OH)2 precursor and LiOH·H2O at 900℃for 10 h in flowing oxygen. XRD, FTIR, FESEM and electrochemical tests were used to study the physical and the electrochemical performances of the materials. The results show that the prepared LiNi0.8Co0.2O2 compound has a good layered hexagonal structure. Moreover, the LiNi0.8Co0.2O2cathode material demonstrates stable cyclability with a high initial specific discharge capacity of 183.9 mAh/g. The good electrochemical performance could be attributed to the uniform distribution of Ni^2+ and Co^2+ ions in the crystal structure and a minimal cation mixing in LiNi0.8Co0.2O2 host structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号