首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了准确预报分析混流泵的水动力噪声,首先结合边界元法和点源模型理论完成静止壁面流噪声和任意边界条件下旋转声源噪声的数值计算与结果校验;然后以某混流泵为对象利用大涡模拟方法得到泵固体壁面脉动压力分布,在此基础上分别计算混流泵静止部件和旋转部件的水动力噪声,最后对二者声场进行叠加即得到了混流泵总声场。研究结果表明:混流泵静止壁面脉动压力幅值最强位置在叶轮与导叶的相互作用区域;静止部件对应的噪声峰值频率主要在叶频、导叶通过频率以及二者的谐频处;在混流泵进口截面叶轮引起的噪声占主要成分,静止部件的贡献可以忽略。  相似文献   

2.
采用基于剪切应力传输(SST)的k-ω两方程分离涡湍流模型(DES)方法和Smagorinsky-Lily亚格子大涡模拟湍流模型(LES)方法,对粘性不可压缩流体的光滑球与凹坑球体绕流问题进行数值模拟,计算了雷诺数为500,1 000,2 000,5 000四种情况。通过对所得的阻力系数Cd及速度云图等结果的分析及与实验数据的比较,发现两种方法当雷诺数较小时模拟光滑球的结果差异微小,对光滑圆球的模拟都是合理的;随着雷诺数的增大,LES方法与DES模拟光滑球和凹坑球的结果虽然总体特征一致,但是细节有明显差异,LES的结果优于DES的结果。  相似文献   

3.
潜艇涡量场和流噪声等效声中心的数值预报   总被引:1,自引:0,他引:1  
为了实现潜艇湍流噪声及其等效声中心的数值预报,在分析SUBOFF潜艇拖曳和自航状态下涡量场的基础上,采用大涡模拟与声学边界元相结合的方法,在频域内预报了流噪声空间分布、测点谱源级曲线和声指向性,求取了等效声中心位置并分析了其受螺旋桨旋转作用的影响.计算结果表明:附体与艇体结合部马蹄涡和附体端面诱导项链形涡对是潜艇涡量场的主要特征,且马蹄涡系具有较高的强度和稳定性;附体尾涡脱落频率存在19.22Hz的线谱,且在尾涡测点谱曲线中得到明确体现;随着频率增加,流噪声蝶形指向性对应的辐射瓣状区间数随波数增加,且正横方向声压要强于首尾方向;流噪声等效声中心位于距艇艏0.46倍艇长处,在10Hz~1kHz内总声源级为95.09dB;艇艉桨对附体马蹄涡系影响较小,但促使等效声中心迅速移至艇艉.  相似文献   

4.
为探究艇体对紧急倒车时螺旋桨诱导涡的影响,基于大涡模拟(LES)湍流模型,以Star CCM+为工具,对Sub-off后的E1619桨周围的流场特性进行计算,并对网格和时间步长进行收敛性分析,提高计算结果的可靠性.计算结果表明:上游艇体的存在会明显加剧螺旋桨诱导涡的变形和演化,进而增加其载荷波动程度及载荷平均值,反之,螺旋桨的紧急倒车运转亦会增加艇体阻力的均值和波动;极限载荷工况下桨叶间的流动分离是造成环状涡急剧变形和分离的重要原因.  相似文献   

5.
基于计算流体力学(CFD)Star-CCM+软件,以船用E779A螺旋桨为研究对象,采用大涡模拟方法和Schnerr-Sauer空化模型模拟螺旋桨尖端梢涡空化.在螺旋桨可能发生尖端梢涡空化的位置上使用螺旋管为体积控制,形成螺旋加密网格,对E779A螺旋桨的梢涡空化进行更为精细的数值模拟.实验和数值模拟的水动力结果表明:本文方法具有良好的数值预报精度,推力、扭矩系数和敞水效率较为相符.在此基础上进行基于螺旋加密网格的梢涡空化数值模拟,通过模拟结果可以看出:螺旋加密区的流动得到了更为精细的模拟,并清晰展示了加密梢涡的速度和压力分布.数值和实验的空化结果比较表明:本文方法能够较好地预测螺旋桨的空化,尤其是梢涡空化的形态和规律.  相似文献   

6.
汽车外流场具有非定常、大分离和涡结构复杂的特点.采用分离涡模拟(DES)方法对某汽车外流场进行了数值模拟分析,将压力分布、摩擦因数分布、尾部速度和湍动能分布等结果与雷诺平均模拟(RANS)方法进行了比较.计算结果表明:在时均结果上,DES和RANS结果差别不大,但DES方法在处理非定常流动和捕捉含能结构方面优势明显,更...  相似文献   

7.
采用大涡模拟(Large Eddy Simulation,LES)和基于雷诺平均(Reynolds Average Navier-Stocks,RANS)的SST(Shear Stress Transport)k-ω湍流模型,分别对高速列车单车明线运行进行瞬态和稳态的仿真计算,通过与实车测试数据比较对数值模拟进行了验证.对比分析LES和RANS的计算结果发现:对于车头表面测压点,LES和RANS都能给出高精度的计算结果,且LES的瞬态计算结果表明,表面压力最大值在一个很宽的范围内波动;对于列车绕流结构,LES较RANS表现出更强的小尺度涡的捕捉能力,尤其表现在复杂的尾流区;通过气动力系数的傅里叶变换分析了波动的频域特性.LES在较复杂列车模型外流场模拟中的高计算精度,及其广泛的结果信息可以为列车的系统耦合设计提供可靠的数据参考.  相似文献   

8.
采用风洞试验和数值计算的方法,通过Dihedron模型研究了前窗倾角对A柱涡动力学演化的影响.时均阻力和表面压力通过风洞试验获得,采用分离涡模拟(DES)捕捉A柱涡拓扑结构的细节特征.通过风洞试验的结果验证了DES结果的有效性.DES的结果描述了A柱涡涡破裂现象.随着前窗倾角的变化,A柱涡表现为不同的结构形态,这主要是由主涡中涡量平衡决定的.试验和数值结果均表明,随前窗倾角增大,Dihedron模型的阻力增加.讨论了纵向涡的破裂趋势和潜在的减阻方案.最后,强调了模型壁面的动力学特性及其对车内噪声的影响.  相似文献   

9.
针对大涡模拟(LES)计算精确但耗费大量计算机资源的特点,采用动力降尺度的方法,把传统的边界层(PBL)方案与LES模拟相结合,利用WRFV3.7模式四重到五重嵌套网格,以华北地区一次辐射雾为例进行模拟,试图保留LES计算精确的特点,并减少计算机时。结果表明,动力降尺度方法能够准确地预报雾的发生,与同样水平分辨率的LES模拟相比,四层嵌套网格节省47.02%计算机时,五层嵌套网格节省67.67%计算机时,可以为未来高分辨率业务预报系统的LES模拟实现提供一种可能性。  相似文献   

10.
基于大涡模拟(LES)方法和Lighthill声学类比方法,对一倒T型开孔进行流场及流激噪声进行数值模拟,计算所得结果与公开发表文献上的数值及实验结果吻合良好,验证了基于LES的流噪声数值模拟方法的可行性.在此基础上,对某三维开孔潜体(原型)及其改型进行了流噪声数值模拟,对潜体内腔流场及其噪声辐射结果进行分析,从数值模拟的角度验证了改型潜体在阻力和噪声性能上都要优于原型潜体.
  相似文献   

11.
分离涡模拟k-ε湍流模式及在火灾模拟中的应用   总被引:1,自引:0,他引:1  
为了构造一种使用较少网格并能获得流动主要特性的湍流计算方法,根据分离涡模拟(detached-eddy simulation,DES)方法的一般性定义,发展了一种基于k-ε两方程湍流模式的DES方法.用该方法代替FDS软件中的亚格子应力模式构造的DES求解器被用来对湍流强迫对流问题和单室火灾问题进行数值模拟.计算结果与大涡模拟的结果和实验数据进行对比.强迫对流问题的计算结果与实验数据吻合得非常好,用较少的网格取得了比使用较多网格的大涡模拟方法更好的结果.用该方法预测的单室火灾问题的速度分布与实验结果非常接近,但是预测的温度分布则较差.这可能是由于该数值方法缺乏较好的湍流燃烧模型所致.  相似文献   

12.
大涡模拟与大气边界层研究--30年回顾与展望   总被引:9,自引:0,他引:9  
对大涡模拟(LES)技术应用于大气边界层(PBL)研究30年来的发展历程、应用前景及发展趋势作了简要评述,内容包括:LES网格体积平均方程组,次网格闭合方案(K闭合、湍能(TKE)闭合、二阶闭合、动力学闭合、随机闭合、各向异性TKE闭合和非线性闭合);均匀、非均匀下垫面对流边界层(CBL)的大涡模拟,稳定边界层(SBL)、实际PBL的大涡模拟,森林下垫面流场和建筑物周围流场的大涡模拟,污染扩散的大涡模拟,LES-化学模式,对流层大涡模拟,大涡模拟对模拟域、网格及大涡时间尺度的敏感性,适用于LES和中尺度模拟的湍流方案研究等.提出了LES需要进一步研究的问题,如次网格(SGS)闭合方案,物理过程参数化方案,高分辨卫星和Doppler雷达资料的使用,与中尺度模式的连接与嵌套等;以及可能的应用领域,如大气湍流发展及湍涡相互作用,复杂地形流场及城市边界层模拟,污染扩散模拟,LES-大气化学模拟,中尺度气象模拟,数值天气预报及大气环流模式中高分辨边界层方案(大涡机制)的引入.希望能为大气边界层研究与应用中发挥LES模拟效能的成功实施起到一定的推动作用.  相似文献   

13.
方柱绕流的大涡模拟   总被引:4,自引:0,他引:4  
采用大涡模拟(LES)方法对雷诺数为2.2×104的方柱绕流流场进行了数值模拟.使用非交错网格的有限差分法,分别对准三维物理模型和真实三维物理模型求解不可压N-S方程,将沿流向方向方柱水平中心线上的时均速度的计算结果与实验数据进行了比较,结果表明,三维模型的模拟结果优于准三维模型的模拟结果.比较升力系数和阻力系数发现,与二维模拟(RNG)方法相比, 三维模拟的结果更加接近实验测试数据.  相似文献   

14.
大涡模拟预报可靠性分析   总被引:2,自引:0,他引:2  
针对明渠道湍流流动,研究了计算网格、计算域大小、亚格子(SGS)模型和雷诺数等因素对大涡模拟(LES)预报精度的影响。研究表明,即使简单外形的湍流流动,网格尺寸大小及匹配仍较大地影响大涡模拟计算结果,因此具体使用中应予以充分重视。  相似文献   

15.
利用WRF V3.5.1,对2013年1月21日18:00华北地区突发的大范围辐射雾过程进行模拟,对不同水平分辨率的WRF边界层方案以及大涡模拟(LES)进行对比,讨论中尺度模式对此次事件预报的可能性。结果表明:WRF边界层方案对这次辐射雾有一定的模拟能力,但模拟的发生时间有3小时的延迟,而LES方案能很好地模拟出此次大雾过程的出现时间和雾区位置;提高水平分辨率可以改善LES模拟的结果,使得雾的形成时间和雾区范围更接近实况。进一步的分析表明,LES实验模拟相比边界层方案,地面的气温更低,水汽更多,相对湿度更大,逆温层出现更早。因此对于这个个例而言,LES可以明显提高中尺度模式对华北地区辐射雾的预报技巧。  相似文献   

16.
非线性涡格法预报桨后舵附推力鳍水动力性能   总被引:2,自引:0,他引:2  
对螺旋桨与舵附推力鳍分别采用升力面法和非线性涡格法计算.螺旋桨、舵附推力鳍两者之间的相互干扰采用迭代计算.数值计算过程中考虑了推力鳍端部分离涡的影响,提高了理论预报的准确性.螺旋桨尾流区分为过渡区和远尾流区.过渡区长度取3.0D,以使舵附推力鳍完全处于螺旋桨尾流的过渡区内,过渡区采用圆锥螺旋面来模拟涡片的变形现象.对影响推力鳍助推效率的几个主要参数进行了变尺度研究.并将结果与前人的计算结果进行了对比,计算结果显示螺旋桨后的舵附推力鳍助推效率随着安装角的改变而显著变化.存在最佳安装角,大约为5°,离开这个最佳安装角,推力鳍的助推效率将下降;推力鳍的展长与螺旋桨半径之比在0.9左右时推力鳍的助推效率最高;螺旋桨进速系数越小,推力鳍的助推效率越大.  相似文献   

17.
圆柱-翼型干涉噪声特性研究   总被引:1,自引:0,他引:1  
圆柱-翼型干涉噪声主要是用来模拟类似涡扇静子,或者风机静子的脱落涡打到转子上所产生噪声的现象。圆柱的脱落涡随气流流动,对下游的翼型冲击,产生非定常表面载荷,带来强烈的噪声。在全消声室风洞,对三种不同尺寸圆柱的圆柱-翼型干涉噪声的特性进行了试验与仿真研究。圆柱的尺寸直径分别为10 mm、15 mm和20 mm,翼型为NACA 0012翼型;流场计算采用大涡模拟(LES),声场计算基于FW-H积分方程。对比实验与仿真可知,圆柱脱落涡是典型的周期性卡门涡街,翼面相互作用是产生噪声的主要原因;试验得到三种不同直径的圆柱-翼型干涉纯音噪声的斯特劳哈尔数为0.19左右,与卡门涡阶脱落涡的频率一致;噪声远场为偶极子指向性;随着圆柱尺寸的增大,噪声的总声压级增大;低频噪声源主要位于翼型前缘,高频噪声主要由圆柱脱落涡引起。  相似文献   

18.
基于大涡模拟的平屋盖锥形涡数值分析研究   总被引:1,自引:0,他引:1  
采用大涡模拟(LES)对平屋盖建筑受45°风向角作用下的表面风荷载问题进行了非稳态数值模拟分析.通过与风洞试验结果的对比得出,大涡模拟能较好地捕捉到建筑物顶面出现的锥形涡及其特性.在此基础上,研究了锥形涡作用下建筑物顶面平均风压与脉动风压的分布,以及加设分隔挡板和不同高度的女儿墙对屋面风压分布和旋涡强度的影响.研究结果表明,基于Q准则的旋涡判别法可以较好地识别斜风向下屋面形成的锥形旋涡;在背风区锥形涡与侧面脱体涡相互作用并脱落,其影响将反馈至屋面旋涡上导致屋盖两个锥形涡强度以屋面对角线为轴交替波动,此消彼长;屋面女儿墙的存在使得两个锥形涡之间的间隙变窄,旋涡足迹变阔,且屋面峰值吸力随女儿墙高度的增加而迅速减小.  相似文献   

19.
输电塔钢管构件涡激振动数值模拟   总被引:1,自引:0,他引:1  
用数值模拟方法对钢管构件涡激振动现象进行研究,分别进行了静止圆管绕流数值模拟以及弹簧支撑单自由度圆管绕流数值模拟.结果表明:静止圆管计算工况雷诺数介于20 000~35 000之间,升力系数幅值以及阻力系数均值的平均值分别为1.427和1.273,与前人试验结果较为吻合;涡街形成的决定性因素是物体后部两个分离剪切层的相互作用;发生涡激振动时,顺风向响应要远小于横风向响应;基于单自由度模型进行动网格分析,给出了最大位移比公式以及线性插值关系式,将二维数值模拟应用于三维钢管构件的涡振疲劳分析.  相似文献   

20.
采用大涡模拟方法(LES)模拟了悉尼旋流燃烧器的中等旋流数算例(N29S054和N29S045)的冷态流场,研究了涡旋破碎泡(下游二次回流区)的不稳定模式.LES结果得到的统计矩总体上与实验值符合得较好.研究发现:涡旋破碎泡没有螺旋形结构,其周围也没有出现螺旋形状的进动涡核,表明涡旋破碎泡没有典型的进动特征;瞬时速度分布显示了涡旋破碎泡存在着周期性的收缩/崩塌与膨胀的现象;功率谱的特征峰证实了涡旋破碎泡存在着周期性运动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号