首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of extracellular calmodulin in regulating expression of rbcS in darkness was examined. A suspension-cultured cell line was generated from the transgenic rbcS-GUS tobacco. It was demonstrated that purified calmodulin added to the media enhanced rbcS-GUS expression. The time course of expression of rbcS-GUS and that of the secretion of calmodulin in the suspended transgenic tobacco cells in darkness were very similar. Both showed initial increase followed by decline with maximum calmodulin secretion preceding maximum GUS expression. The addition of membrane-impermeable calmodulin antagonist W7-agarose inhibited the expression of rbcS-GUS in darkness, but this inhibitory effect was completely reversed by adding exogenous purified calmodulin. These results provide the first evidence that extracellular calmodulin accelerates rbcS gene expression.  相似文献   

2.
Cytoplasmic free calcium concentration([Ca2+]c) in pollen cells of Lilium daviddi is measured with confocal laser scanning microscopy to investigate the effect of heterotrimeric G protein (G protein) on [Ca2+]c and the possible signal transduction pathway of G protein triggering cellular calcium signal. After application, cholera toxin (CTX), an agonist of G protein, triggers a transient increase of [Ca2+]c in pollen cells, and evokes a spatial-temporal characteristic calcium dynamics; while pertussis toxin (PTX), a G protein antagonist, leads to the decrease of [Ca2+]c. Both L-type Ca2+ channel blocker verapamil and inhibitor of IP3 receptor heparin inhibit CTX-induced [Ca2+]c increase. The results show that G protein may play a role in the modulation of [Ca2+]c through enhancing the extracellular Ca2+ influx and releasing of Ca2+ from intracellular stores.  相似文献   

3.
以转rbcS-GUS基因烟草悬浮细胞为材料,通过用荧光光度法检测报告基因GUS酶的活性的方法,发现暗中培养的转基因烟草悬浮细胞细胞外CaM或红光处理后,rbcS基因表达明显增加,而细胞外CaM和红光同时处理却只使rbcS基因表达增加4-5倍。  相似文献   

4.
N T Ktistakis  M E Linder  M G Roth 《Nature》1992,356(6367):344-346
In many mammalian cells brefeldin A interferes with mechanisms that keep the Golgi appartus separate from the endoplasmic reticulum. The earliest effect of brefeldin A is release of the coat protein beta-COP from the Golgi. This release is blocked by pretreatment with GTP-gamma S or AlF4- (ref. 12). The AlF4- ion activates heterotrimeric G proteins but not proteins of the ras superfamily, suggesting that a heterotrimeric G protein might control membrane transfer from the endoplasmic reticulum to the Golgi. We report here that mastoparan, a peptide that activates heterotrimeric G proteins, promotes binding of beta-COP to Golgi membranes in vitro and antagonizes the effect of brefeldin A on beta-COP in perforated cells and on isolated Golgi membranes. This inhibition is greatly diminished if cells are pretreated with pertussis toxin before perforation. Thus, a heterotrimeric G protein of the Gi/Go subfamily regulates association of coat components with Golgi membranes.  相似文献   

5.
Signal transduction by G-protein-coupled receptors is regulated by various mechanisms acting at the receptor level; those studied most thoroughly are from the beta-adrenergic receptor/Gs/adenylyl cyclase system. We report here a regulatory mechanism occurring at the level of the G proteins themselves. A protein with M(r) 33,000 that inhibits Gs-GTPase activity was purified from bovine brain. This protein is very similar or identical to phosducin, a protein previously thought to be specific for retina and pineal gland. Recombinant phosducin inhibited the GTPase activity of several G proteins, and also inhibited Gs-mediated adenylyl cyclase activation. Blockade of its inhibitory effects by protein kinase A suggests that phosducin may be part of a complex regulatory network controlling G-protein-mediated signalling.  相似文献   

6.
Lipid modification at the N terminus of photoreceptor G-protein alpha-subunit.   总被引:10,自引:0,他引:10  
K Kokame  Y Fukada  T Yoshizawa  T Takao  Y Shimonishi 《Nature》1992,359(6397):749-752
Myristate is a fatty acid (fourteen-carbon chain with no double bonds, C14:0) linked to the amino-terminal glycine of several proteins, including alpha-subunits of heterotrimeric (alpha/beta gamma) G proteins. We report here a novel modification at the N terminus of the alpha-subunit of the photoreceptor G protein transducin, T alpha, with heterogeneous fatty acids composed of laurate (C12:0), unsaturated C14:2 and C14:1 fatty acids, and a small amount (approximately 5%) of myristate. Both the GTPase activity of T alpha/T beta gamma and the T beta gamma-dependent ADP-ribosylation of T alpha catalysed by pertussis toxin were inhibited by the lauroylated and myristoylated N-terminal peptide of T alpha. The myristoylated peptide gave 50% inhibition at a 3.5 to approximately 4.5-fold lower concentration than the lauroylated peptide in each assay, indicating that the strength of the interaction between T alpha and T beta gamma is altered by heterogeneous fatty acids linked to T alpha. This suggests that a looser subunit interaction in transducin which is due to an abundance of N-linked fatty acids other than myristate would favour the rapid turnover and catalysis essential for the visual excitation in photoreceptor cells.  相似文献   

7.
Botulinum C2 toxin ADP-ribosylates actin   总被引:45,自引:0,他引:45  
ADP-ribosylation of regulatory proteins is an important pathological mechanism by which various bacterial toxins affect eukaryotic cell functions. While diphtheria toxin catalyses the ADP-ribosylation of elongation factor 2, which results in inhibition of protein synthesis, cholera toxin and pertussis toxin ADP-ribosylate Ns and Ni, respectively, the GTP-binding regulatory components of the adenylate cyclase system, thereby modulating the bidirectional hormonal regulation of the adenylate cyclase. Botulinum C2 toxin is another toxin which has been reported to possess ADP-ribosyltransferase activity. This extremely toxic agent is produced by certain strains of Clostridium botulinum and induces hypotension, an increase in intestinal secretion, vascular permeability and haemorrhaging in the lungs. In contrast to botulinum neurotoxins, the botulinum C2 toxin apparently lacks any neurotoxic effects. Here we report that botulinum C2 toxin ADP-ribosylates a protein of relative molecular mass 43,000 (43K) in intact cells and in cell-free preparations. We present evidence that the 43K protein substrate is actin, which is apparently mono-ADP-ribosylated by the toxin. Botulinum C2 toxin also ADP-ribosylated purified liver G-actin, whereas liver F-actin was only poorly ADP-ribosylated and skeletal muscle actin was not ADP-ribosylated in either its G form or its F form. ADP-ribosylation of liver G-actin by botulinum C2 toxin resulted in a drastic reduction in viscosity of actin polymerized in vitro.  相似文献   

8.
M D Arshavsky VYuBownds 《Nature》1992,357(6377):416-417
The photoreceptor G protein, transducin, is one of the class of heterotrimeric G proteins that mediates between membrane receptors and intracellular enzymes or ion channels. Light-activated rhodopsin catalyses the exchange of GDP for GTP on multiple transducin molecules. Activated transducin then stimulates cyclic GMP phosphodiesterase by releasing an inhibitory action of the phosphodiesterase gamma-subunits. This leads to a decrease in cGMP levels in the rod, and closure of plasma membrane cationic channels gated by cGMP. In this and other systems, turn-off of the response requires the GTP bound to G protein to be hydrolysed by an intrinsic GTPase activity. Here we report that the interaction of transducin with cGMP phosphodiesterase, specifically with its gamma-subunits, accelerates GTPase activity by several fold. Thus the gamma-subunits of the phosphodiesterase serve a function analogous to the GTPase-activating proteins that regulate the class of small GTP-binding proteins. The acceleration can be partially suppressed by cGMP, most probably through the non-catalytic cGMP-binding sites of phosphodiesterase alpha and beta-subunits. This cGMP regulation may function in light-adaptation of the photo-response as a negative feedback that decreases the lifetime of activated cGMP phosphodiesterase as light causes decreases in cytoplasmic cGMP.  相似文献   

9.
M Camps  A Carozzi  P Schnabel  A Scheer  P J Parker  P Gierschik 《Nature》1992,360(6405):684-686
Hydrolysis by phospholipase C (PLC) of phosphatidylinositol 4,5-bisphosphate is a key mechanism by which many extracellular signalling molecules regulate functions of their target cells. At least eight distinct isozymes of PLC are recognized in mammalian cells. Receptor-controlled PLC is often regulated by G proteins, which can be modified by pertussis toxin in some cells but not in others. In the latter cells, PLC-beta 1, but not PLC-gamma 1 or PLC-delta 1, may be activated by members of the alpha q-subfamily of the G protein alpha-subunits. An unidentified PLC in soluble fractions of cultured human HL-60 granulocytes is specifically stimulated by G protein beta gamma subunits purified from retina and brain. Identification of a second PLC-beta complementary DNA (PLC-beta 2) in an HL-60 cell cDNA library prompted us to investigate the effect of purified G protein beta gamma subunits on the activities of PLC-beta 1 and PLC-beta 2 transiently expressed in cultured mammalian cells. We report here that PLC-beta 1 and PLC-beta 2 were stimulated by free beta gamma subunits and that PLC-beta 2 was the most sensitive to beta gamma stimulation. Thus stimulation of PLC by beta gamma subunits is isozyme-selective and PLC-beta 2 is a prime target of beta gamma stimulation. Activation of PLC-beta 2 by beta gamma subunits may be an important mechanism by which pertussis toxin-sensitive G proteins stimulate PLC.  相似文献   

10.
A Katz  D Wu  M I Simon 《Nature》1992,360(6405):686-689
The activation of heterotrimeric G proteins results in the exchange of GDP bound to the alpha-subunit for GTP and the subsequent dissociation of a complex of the beta- and gamma-subunits (G beta gamma). The alpha-subunits of different G proteins interact with a variety of effectors, but less is known about the function of the free G beta gamma complex. G beta gamma has been implicated in the activation of a cardiac potassium channel, a retinal phospholipase A2 (ref. 9) and a specific receptor kinase, and in vitro reconstitution experiments indicate that the G beta gamma complex can act with G alpha subunit to modulate the activity of different isoforms of adenylyl cyclase. Of two phospholipase activities that can be separated in extracts of HL-60 cells, purified G beta gamma is found to activate one of them. Here we report that in co-transfection assays G beta gamma subunits specifically activate the beta 2 and not the beta 1 isoform of phospholipase, which acts on phosphatidylinositol. We use transfection assays to show also that receptor-mediated release of G beta gamma from G proteins that are sensitive to pertussis toxin can result in activation of the phospholipase. This effect may be the basis of the pertussis-toxin-sensitive phospholipase C activation seen in some cell systems (reviewed in refs 13 and 14).  相似文献   

11.
J H Hartwig  M Thelen  A Rosen  P A Janmey  A C Nairn  A Aderem 《Nature》1992,356(6370):618-622
AGONISTS that stimulate protein kinase C (PKC) induce profound changes in cell morphology correlating with the reorganization of submembranous actin, but no direct connection between PKC and actin assembly has been identified. The myristoylated, alanine-rich C kinase substrate (MARCKS) binds calmodulin and is a predominant, specific substrate of PKC which is phosphorylated during macrophage and neutrophil activation , growth factor-dependent mitogenesis and neurosecretion; it is redistributed from plasma membrane to cytoplasm when phosphorylated and is involved in leukocyte motility. Here we report that MARCKS is a filamentous (F) actin crosslinking protein, with activity that is inhibited by PKC-mediated phosphorylation and by binding to calcium-calmodulin. MARCKS may be a regulated crossbridge between actin and the plasma membrane, and modulation of the actin crosslinking activity of the MARCKS protein by calmodulin and phosphorylation represents a potential convergence of the calcium-calmodulin and PKC signal transduction pathways in the regulation of the actin cytoskeleton.  相似文献   

12.
H Y Wang  D C Watkins  C C Malbon 《Nature》1992,358(6384):334-337
Fully-differentiated mouse 3T3-L1 fibroblasts accumulate large amounts of lipid at 7-10 days after induction by insulin or by dexamethasone and a methyl xanthine. G proteins mediate transmembrane signalling from a diverse group of cell-surface receptors to effector units that include phospholipase C, adenylyl cyclase and ion channels. They are also targets of regulation themselves. 3T3-L1 fibroblasts display marked changes in levels of G protein when induced to differentiate to adipocytes. Here we show that cholera toxin, which ADP-ribosylates and activates the G protein subunit Gs alpha, blocks the induction of differentiation, whereas increasing intracellular cyclic AMP directly with the dibutyryl analogue or indirectly with pertussis toxin or forskolin does not affect differentiation. Oligodeoxynucleotides antisense to the sequence encoding Gs alpha accelerate differentiation markedly. The time course of adipogenesis declined from 7-10 days in controls to roughly 3 days in cultures treated with antisense-Gs alpha oligodeoxynucleotides, whereas oligodeoxynucleotides, antisense to Gi alpha 1, Gi alpha 3, and sense and missense to Gs alpha, had no such effect. Antisense-Gs alpha alone induced differentiation by day 7, indicating that Gs alpha activity modulates differentiation in 3T3-L1 cells, acting in a new role which is independent of increased intracellular cAMP.  相似文献   

13.
The effects of calmoddin (CaM) antagonist W7-agarose, anti-CaM serum and exogenous purified CaM on pollen germination and tube growth ofForsythia suspensu were studied. The pollen germination and tube growth were inhibited or completely stopped by CaM antagonist W7-agarose. The addition of exogenous purified CaM stimulated pollen germination and tube growth, whereas the same amount of bovine serum albumin (BSA) had no effect. The inhibitory effects caused by W7-agarose and anti-CaM serum could be reversed completely by the addition of exogenous purified CaM. The tube growth of germinated pollen was also inhibited or completely stopped by W7-agarose. The results suggest that endogenous extracellular CaM initiates pollen germination and tube growth, whereas exogenous CaM enhances the above processes.  相似文献   

14.
K H Jakobs  K Aktories  G Schultz 《Nature》1983,303(5913):177-178
The cyc- variants of S49 lymphoma cells have served as powerful tools for studying the components and mechanisms of hormone-induced adenylate cyclase stimulation, as these cells are deficient in the guanine nucleotide regulatory site (Ns) mediating hormone, guanine nucleotide, cholera toxin and fluoride-induced stimulations of the enzyme. Because of this deficiency, membranes of these cells have been used for reconstitution of the system by inserting the coupling component derived from other cell types. The hormone-sensitive adenylate cyclase is not only stimulated by hormones but can also be inhibited by a wide variety of hormones and neurotransmitters, and there is some evidence that hormonal inhibition may be mediated by a distinct guanine nucleotide regulatory site. Studies in cyc- cells lacking a functional Ns may therefore answer this unresolved, important question. We have recently observed that stable GTP analogues can inhibit cyc- adenylate cyclase stimulated by purified, preactivated Ns or forskolin, which can activate adenylate cyclase even in the absence of a functional Ns (ref. 10). The data indicated that these Ns-deficient cells contain an inhibitory guanine nucleotide site, Ni. To strengthen this concept, we investigated whether the cyc- adenylate cyclase can be inhibited by a hormone. We report here that somatostatin decreases cyclic AMP levels in cyc- cells, inhibits the forskolin-stimulated adenylate cyclase and causes a concomitant increase in a high affinity GTPase activity in cyc- membranes. The data strongly suggest that both the hormone- and guanine nucleotide-induced adenylate cyclase inhibitions in cyc- cells are mediated by Ni and that the mechanisms of activation and inactivation of Ni are similar to those established for Ns.  相似文献   

15.
K Seuwen  I Magnaldo  J Pouysségur 《Nature》1988,335(6187):254-256
Growth factors can be divided into two classes which act through distinct signal transduction pathways. One class including epidermal growth factor, platelet derived growth factor and fibroblast growth factor activates receptor tyrosine kinases, and the second class, including thrombin, bombesin, bradykinin and vasopressin activates a phosphoinositide-specific phospholipase C through GTP-binding proteins which can be inactivated by pertussis toxin. In Chinese hamster lung fibroblasts, thrombin-induced mitogenicity seems to correlate well with phospholipase C activation and both events are sensitive to pertussis toxin. Thrombin, like the other mitogens in this class, simultaneously inhibits adenylate cyclase. This involves an inhibitory G protein (Gi), a well established pertussis toxin substrate. The relative contributions of the two signalling pathways to mitogenicity has not been evaluated so far. We report here that the neurotransmitter serotonin (5-hydroxytryptamine), a contracting agent and mitogen for smooth muscle cells, activates phospholipase C, inhibits adenylate cyclase and stimulates DNA synthesis in fibroblasts. These events are sensitive to pertussis toxin. We show that the mitogenicity of 5-hydroxytryptamine can be uncoupled from phospholipase C activation that is mediated by 5-HT2 receptors, but correlates perfectly with inhibition of adenylate cyclase through 5-HT1B receptor. We propose that inhibition of adenylate cyclase or activation of an undefined effector system by Gi is important in 5-hydroxytryptamine induced DNA synthesis and contributes to the strong mitogenicity of the other members of this family of growth factors.  相似文献   

16.
植物胞外CaM调节机理初探   总被引:4,自引:0,他引:4  
利用NAD激酶法和平衡透析法,作者研究了不同pH条件对Ca^2+,钙调素(CaM)的结合能力及CaM激活NAD激酶的影响。结果发现:H^+不仅能降低Ca^2+与CaM的结合能力而且还能显著抑制CaM对NAD激酶的激活。本实验证实了酸性条件下不利于CaM的活性状态的转变,即pH值低时激活CaM需要更多的Ca^2+。此研究结果为植物胞外CaM的活性状态的转变,即pH值低时激活CaM需要更多的Ca^2+  相似文献   

17.
通过RT-PCR和PCR技术,从麻疯树基因组中克隆得到一个Kunitz型蛋白酶抑制剂基因(JcKTI)的开放阅读框序列。对应开放读码框的基因组序列不含有内含子。该开放阅读框长度为540bp,编码一个含有179个氨基酸残基的成熟多肽,具有典型的Kunitz家族结构特征。组织特异性表达研究显示,JcKTI基因在根和茎中的表达丰度最高,在叶片和种子中表达较低。构建原核表达载体pET32-JcKTI在大肠杆菌BL21中表达,获得纯化的重组蛋白,该蛋白显示出一定的抑制牛胰蛋白酶的活性。将该基因在烟草中过表达,明胶酶法和BAEE法的结果均显示转基因植物的蛋白提取物对胰蛋白酶具有一定抑制作用,进一步的抗虫实验结果表明转基因烟草叶片可使进食后的棉铃虫幼虫生长发育受阻,并减少对叶片的吞食。上述结果暗示JcKTI基因可能在麻疯树根和茎的抗虫应答中扮演着一定的角色。  相似文献   

18.
The mechanisms for the production of hydrogen peroxide (H2O2) induced by abscisic acid (ABA) were investigated in suspension culture cells of tobacco BY-2 cells. The results showed that the immediate generation of H2O2, which was mainly derived from super-oxide dismutase-catalyzed dismutation of superoxide radical, was significantly induced by ABA. Furthermore, treatment of the cultured tobacco cells with ABA resulted in a time-dependent quick increase in plasma membrane (PM) NADPH oxidase activity, which coin- cided on time and magnitude with the elevation in ABA-induced accumulation of H2O2. Moreover, these enhanced effects were pro- nouncedly inhibited by two NADPH oxidase inhibitors, diphenylene iodonium and imidazole, suggesting that PM NADPH oxidase is involved in the rapid accumulation of H2O2 in cultured tobacco cells. In addition, analysis of the expression level of NtrbohD, a PM NADPH oxidase gene in tobacco, by RT-PCR and protein gel blot revealed that the gene at both mRNA and protein levels was upregulated by ABA, indicating that NtrbohD participates in the ABA-stimulated rapid production of H2O2 in tobacco culture cells. Taken together, these findings suggest that ABA induces the rapid accumulation of reactive oxygen species via NADPH oxidase in sus-pension culture cells of tobacco, and that NADPH oxidase and H2O2 appear to be important components in ABA signal transduction pathway in plants.  相似文献   

19.
Many receptors for neuropeptides and hormones are coupled with the heterotrimeric G(i) protein, which activates the p42/44 mitogen-activated protein kinase (ERK/MAPK) cascade through both the alpha- and betagamma-subunits of G(i). The betagamma-subunit activates the ERK/MAPK cascade through tyrosine kinase. Constitutively active G(alpha)i2 (gip2) isolated from adrenal and ovarian tumours transforms Rat-1 fibroblasts and also activates the ERK/MAPK cascade by an unknown mechanism. The ERK/MAPK pathway is activated by Ras, and is inhibited when the low-molecular-mass GTP-binding protein Rap1 antagonizes Ras function. Here we show that a novel isoform of Rapl GTPase-activating protein, called rap1GAPII, binds specifically to the alpha-subunits of the G(i) family of heterotrimeric G-proteins. Stimulation of the G(i)-coupled m2-muscarinic receptor translocates rap1GAPII from the cytosol to the membrane and decreases the amount of GTP-bound Rap1. This decrease in GTP-bound Rap1 activates ERK/MAPK. Thus, the alpha-subunit of G(i) activates the Ras-ERK/MAPK mitogenic pathway by membrane recruitment of rap1GAPII and reduction of GTP-bound Rap1.  相似文献   

20.
Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis   总被引:26,自引:0,他引:26  
Sever S  Muhlberg AB  Schmid SL 《Nature》1999,398(6727):481-486
Dynamin is a GTP-hydrolysing protein that is an essential participant in clathrin-mediated endocytosis by cells. It self-assembles into 'collars' in vitro which also formin vivo at the necks of invaginated coated pits. This self-assembly stimulates dynamin's GTPase activity and it has been proposed that dynamin hydrolyses GTP in order to generate the force needed to sever vesicles from the plasma membrane. A mechanism is now described in which self-assembly of dynamin is coordinated by a domain of dynamin with a GTPase-activating function. Unexpectedly, when dynamin mutants defective in self-assembly-stimulated GTPase activity are overexpressed, receptor-mediated endocytosis is accelerated. The results indicate that dynamin, like other members of the GTPase superfamily, functions as a molecular regulator in receptor-mediated endocytosis, rather than as a force-generating GTPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号