首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Agonist-bound receptors activate heterotrimeric (alpha beta gamma) G proteins by catalysing replacement by GTP of GDP bound to the alpha subunit, resulting in dissociation of alpha-GTP from the beta gamma subunits. In most cases, alpha-GTP carries the signal to effectors, as in hormonal stimulation and inhibition of adenylyl cyclase by alpha s and alpha i respectively. By contrast, genetic evidence in yeast and studies in mammalian cells suggest that beta gamma subunits of G proteins may also regulate effector pathways. Indeed, of the four recombinant mammalian adenylyl cyclases available for study, two, adenylyl cyclases II and IV, are stimulated by beta gamma. This effect of beta gamma requires costimulation by alpha s-GTP. This conditional pattern of effector responsiveness led to the prediction that receptors coupled to many G proteins will mediate elevation of cellular cyclic AMP, provided that Gs is also active. We now confirm this prediction. Coexpression of mutationally active alpha s with adenylyl cyclase II converted agonists that act through 'inhibitory' receptors (coupled to Gi) into stimulators of cAMP synthesis. Experiments using pertussis toxin and a putative scavenger of beta gamma, the alpha subunit of transducin, suggest that beta gamma subunits of the Gi proteins mediated this stimulation. These findings assign a new signalling function to beta gamma subunits of Gi proteins, the conditional stimulation of cAMP synthesis by adenylyl cyclase II.  相似文献   

2.
A Katz  D Wu  M I Simon 《Nature》1992,360(6405):686-689
The activation of heterotrimeric G proteins results in the exchange of GDP bound to the alpha-subunit for GTP and the subsequent dissociation of a complex of the beta- and gamma-subunits (G beta gamma). The alpha-subunits of different G proteins interact with a variety of effectors, but less is known about the function of the free G beta gamma complex. G beta gamma has been implicated in the activation of a cardiac potassium channel, a retinal phospholipase A2 (ref. 9) and a specific receptor kinase, and in vitro reconstitution experiments indicate that the G beta gamma complex can act with G alpha subunit to modulate the activity of different isoforms of adenylyl cyclase. Of two phospholipase activities that can be separated in extracts of HL-60 cells, purified G beta gamma is found to activate one of them. Here we report that in co-transfection assays G beta gamma subunits specifically activate the beta 2 and not the beta 1 isoform of phospholipase, which acts on phosphatidylinositol. We use transfection assays to show also that receptor-mediated release of G beta gamma from G proteins that are sensitive to pertussis toxin can result in activation of the phospholipase. This effect may be the basis of the pertussis-toxin-sensitive phospholipase C activation seen in some cell systems (reviewed in refs 13 and 14).  相似文献   

3.
S J Taylor  H Z Chae  S G Rhee  J H Exton 《Nature》1991,350(6318):516-518
Many hormones, neurotransmitters and growth factors, on binding to G protein-coupled receptors or receptors possessing tyrosine kinase activity, increase intracellular levels of the second messengers inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. This is due to activation of phosphoinositide-specific phospholipase(s) C (PLC), the isozymes of which are classified into groups, alpha, beta, gamma and delta. The beta, gamma and delta groups themselves contain PLC isozymes which have both common and unique structural domains. Only the gamma 1 isozyme has been implicated in a signal transduction mechanism. This involves association with, and tyrosine phosphorylation by, the ligand-bound epidermal growth factor and platelet-derived growth factor receptors, probably by means of the PLC-gamma 1-specific src homology (SH2) domain. Because EGF receptor-mediated tyrosine phosphorylation of PLC-gamma 1 stimulates catalytic activity in vitro and G proteins have been implicated in the activation of PLC, we investigated which PLC isozymes are subject to G protein regulation. We have purified an activated G protein alpha subunit that stimulates partially purified phospholipase C and now report that this G protein specifically activates the beta 1 isozyme, but not the gamma 1 and delta 1 isozymes of phospholipase C. We also show that this protein is related to the Gq class of G protein alpha subunits.  相似文献   

4.
N Nakanishi  K Maeda  K Ito  M Heller  S Tonegawa 《Nature》1987,325(6106):720-723
During the search for genes coding for the mouse alpha and beta subunits of the antigen-specific receptor of mouse T cells we encountered a third gene, subsequently designated gamma. This gene has many properties in common with the alpha and beta genes, somatic assembly from gene segments that resemble the gene segments for immunoglobulin variable (V), joining (J) and constant (C) regions; rearrangement and expression in T cells and not in B cells; low but distinct sequence homology to immunoglobulin V, J and C regions; other sequences that are reminiscent of the transmembrane and intracytoplasmic regions of integral membrane proteins; and a cysteine residue at the position expected for a disulphide bond linking two subunits of a dimeric membrane protein. Despite these similarities the gamma gene also shows some interesting unique features. These include a relatively limited repertoire of the germ-line gene segments, more pronounced expression at the RNA level in immature T cells such as fetal thymocytes and an apparent absence of in-frame RNA in some functional, alpha beta heterodimer-bearing T cells or cultured T clones and hybridomas. To understand the function of the putative gamma protein it is essential to define the cell population that expresses this protein. To this end we produced a fusion protein composed of Escherichia coli beta-galactosidase and the gamma-chain (hereafter referred to a beta-gal-gamma) using the phage expression vector lambda gt11 and raised rabbit antisera against the gamma determinants. Using the purified anti-gamma antibody we detected a polypeptide chain of relative molecular mass 35,000 (Mr 35K) on the surface of 16-day old fetal thymocytes. The gamma-chain is linked by a disulphide bridge to another component of 45K. No such heterodimer was detected on the surface of a cytotoxic T lymphocyte (CTL) clone 2C from which an in-phase gamma cDNA clone was originally isolated.  相似文献   

5.
Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation   总被引:16,自引:0,他引:16  
One or more of three Gi proteins, Gi1-3, mediates hormonal inhibition of adenylyl cyclase. Whether this inhibition is mediated by the alpha or by the beta gamma subunits of Gi proteins is unclear. Mutations inhibiting the intrinsic GTPase activity of another G protein, the stimulatory regulator of adenylyl cyclase (Gs), constitutively activate it by replacing either of two conserved amino acids in its alpha subunit (alpha s). These mutations create the gsp oncogene which is found in human pituitary and thyroid tumours. In a second group of human endocrine tumours, somatic mutations in the alpha subunit of Gi2 replace a residue cognate to one of those affected by gsp mutations. This implies that the mutations convert the alpha i2 gene into a dominantly acting oncogene, called gip2, and that the mutant alpha i2 subunits are constitutively active. We have therefore assessed cyclic AMP accumulation in cultured cells which stably or transiently express exogenous wild-type alpha i2 complementary DNA or either of two mutant alpha i2 cDNAs. The results show that putatively oncogenic mutations in alpha i2 constitutively activate the protein's ability to inhibit cAMP accumulation.  相似文献   

6.
C Kleuss  H Scherübl  J Hescheler  G Schultz  B Wittig 《Nature》1992,358(6385):424-426
Regulatory GTP-binding proteins (G proteins) are membrane-attached heterotrimers (alpha, beta, gamma) that mediate cellular responses to a wide variety of extracellular stimuli. They undergo a cycle of guanine-nucleotide exchange and GTP hydrolysis, during which they dissociate into alpha-subunit and beta gamma complex. The roles of G-protein alpha-subunits in these processes and for the specificity of signal transduction are largely established; the beta- and gamma-subunits are essential for receptor-induced G-protein activation and seem to be less diverse and less specific. Although the complementary DNAs for several beta-subunits have been cloned, isolated subunits have only been studied as beta gamma complexes. Functional differences have been ascribed to the gamma-subunit on the basis of extensive sequence similarity among beta-subunits and apparent heterogeneity in gamma-subunit sequences. Beta gamma complexes can interact directly or indirectly with different effectors. They seem to be interchangeable in their interaction with pertussis toxin-sensitive alpha-subunits, so we tested this by microinjecting antisense oligonucleotides into nuclei of a rat pituitary cell line to suppress the synthesis of individual beta-subunits selectively. Here we show that two out of four subtypes of beta-subunits tested (beta 1 and beta 3) are selectively involved in the signal transduction cascades from muscarinic M4 (ref. 4) and somatostatin receptors, respectively, to voltage-dependent Ca2+ channels.  相似文献   

7.
The dihydropyridine (DHP) receptor purified from skeletal muscle comprises five protein subunits (alpha 1, alpha 2, beta, gamma and delta) and produces Ca2+ currents that are blocked by DHPs. Cloning of the alpha 1- and alpha 2-subunits, the former affinity-labelled by DHP, has shown that the alpha 1-subunit is expressed in skeletal muscle alone, whereas the alpha 2- and delta- subunits are also expressed in other tissues. Although the transient expression of the alpha 1-subunit in myoblasts from dysgenic mice (but not in oocytes) has been demonstrated, the use of these expression systems to determine the function of the alpha 1- subunit is complicated by the presence of endogenous Ca2+ currents, which may reflect the constitutive expression of proteins similar to the alpha 2-, beta-, gamma- and/or delta-subunits. We therefore selected a cell line which has no Ca2+ currents or alpha 2- subunit, and probably no delta-subunit for stable transformation with complementary DNA of the alpha 1- subunit. The transformed cells express DHP-sensitive, voltage-gated Ca2+ channels, indicating that the minimum structure of these channels is at most an alpha 1 beta gamma complex and possibly an alpha 1- subunit alone.  相似文献   

8.
A mutation that prevents GTP-dependent activation of the alpha chain of Gs   总被引:18,自引:0,他引:18  
Membrane-bound G proteins carry information from receptors on the outside of cells to effector proteins inside cells. The alpha subunits of these heterotrimeric proteins bind and hydrolyse GTP and control the specificity of interactions with receptor and effector elements. Signalling by G proteins involves a cycle in which the inactive alpha beta gamma-GDP complex dissociates to produce alpha*-GTP, which is capable of activating the effector enzyme or ion channel; the alpha*-GTP complex hydrolyses bound GTP and reassociates with beta gamma to form the inactive complex. We have characterized a mutation that interrupts this GTP-driven cycle in alpha s, the alpha-chain of Gs, the G protein that stimulates adenylyl cyclase. The mutation converts a glycine to an alanine residue in the presumed GDP-binding domain of alpha s. The location and biochemical consequences of this mutation suggest a common mechanism by which binding of GTP or ATP may induce changes in the conformation of a number of nucleoside triphosphate binding proteins.  相似文献   

9.
The inhibition of voltage-dependent Ca2+ channels in secretory cells by plasma membrane receptors is mediated by pertussis toxin-sensitive G proteins. Multiple forms of G proteins have been described, differing principally in their alpha subunits, but it has not been possible to establish which G-protein subtype mediates inhibition by a specific receptor. By intranuclear injection of antisense oligonucleotides into rat pituitary GH3 cells, the essential role of the Go-type G proteins in Ca(2+)-channel inhibition is established: the subtypes Go1 and Go2 mediate inhibition through the muscarinic and somatostatin receptors, respectively.  相似文献   

10.
Y Fukada  T Takao  H Ohguro  T Yoshizawa  T Akino  Y Shimonishi 《Nature》1990,346(6285):658-660
Transducin, composed of subunits T alpha, T beta and T gamma, is a member of a heterotrimeric G-protein family, and transduces the light signal in visual cells. We have recently found that bovine T beta gamma can be separated into two components. T beta gamma-1 and T beta gamma-2, each of which has its own gamma-subunit, T gamma-1 and T gamma-2, respectively. T beta gamma-2 enhances the binding of GTP to T alpha in the presence of metarhodopsin II by about 30-fold compared with T beta gamma-1. Here we show that a farnesyl moiety is attached to a sulphur atom of the C-terminal cysteine of T gamma-2 (active form), a part of which is additionally methyl-esterified at the alpha-carboxyl group. In T gamma-1 (inactive form), however, such modifications are missing. Thus, the farnesyl moiety attached to the gamma-subunit is indispensable for the GTP-binding activity of transducin. This suggests that a similar modification may occur in the gamma-subunits of other heterotrimeric G proteins involved in biological signal transduction processes.  相似文献   

11.
Lipid modification at the N terminus of photoreceptor G-protein alpha-subunit.   总被引:10,自引:0,他引:10  
K Kokame  Y Fukada  T Yoshizawa  T Takao  Y Shimonishi 《Nature》1992,359(6397):749-752
Myristate is a fatty acid (fourteen-carbon chain with no double bonds, C14:0) linked to the amino-terminal glycine of several proteins, including alpha-subunits of heterotrimeric (alpha/beta gamma) G proteins. We report here a novel modification at the N terminus of the alpha-subunit of the photoreceptor G protein transducin, T alpha, with heterogeneous fatty acids composed of laurate (C12:0), unsaturated C14:2 and C14:1 fatty acids, and a small amount (approximately 5%) of myristate. Both the GTPase activity of T alpha/T beta gamma and the T beta gamma-dependent ADP-ribosylation of T alpha catalysed by pertussis toxin were inhibited by the lauroylated and myristoylated N-terminal peptide of T alpha. The myristoylated peptide gave 50% inhibition at a 3.5 to approximately 4.5-fold lower concentration than the lauroylated peptide in each assay, indicating that the strength of the interaction between T alpha and T beta gamma is altered by heterogeneous fatty acids linked to T alpha. This suggests that a looser subunit interaction in transducin which is due to an abundance of N-linked fatty acids other than myristate would favour the rapid turnover and catalysis essential for the visual excitation in photoreceptor cells.  相似文献   

12.
Mahon MJ  Donowitz M  Yun CC  Segre GV 《Nature》2002,417(6891):858-861
The parathyroid hormone 1 receptor (PTH1R) is a class II G-protein-coupled receptor. PTH1R agonists include both PTH, a hormone that regulates blood calcium and phosphate, and PTH-related protein (PTHrP), a paracrine/autocrine factor that is essential for development, particularly of the skeleton. Adenylyl cyclase activation is thought to be responsible for most cellular responses to PTH and PTHrP, although many actions appear to be independent of adenylyl cyclase. Here we show that the PTH1R binds to Na(+)/H(+) exchanger regulatory factors (NHERF) 1 and 2 through a PDZ-domain interaction in vitro and in PTH target cells. NHERF2 simultaneously binds phospholipase C beta 1 and an atypical, carboxyl-terminal PDZ consensus motif, ETVM, of the PTH1R through PDZ1 and PDZ2, respectively. PTH treatment of cells that express the NHERF2 PTH1R complex markedly activates phospholipase C beta and inhibits adenylyl cyclase through stimulation of inhibitory G proteins (G(i/o) proteins). NHERF-mediated assembly of PTH1R and phospholipase C beta is a unique mechanism to regulate PTH signalling in cells and membranes of polarized cells that express NHERF, which may account for many tissue- and cell-specific actions of PTH/PTHrP and may also be relevant to signalling by many G-protein-coupled receptors.  相似文献   

13.
D Kim  D L Lewis  L Graziadei  E J Neer  D Bar-Sagi  D E Clapham 《Nature》1989,337(6207):557-560
Muscarinic receptors of cardiac pacemaker and atrial cells are linked to a potassium channel (IK.ACh) by a pertussis toxin-sensitive GTP-binding protein. The dissociation of G-proteins leads to the generation of two potential transducing elements, alpha-GTP and beta gamma. IK.ACh is activated by G-protein alpha- and beta gamma-subunits applied to the intracellular surface of inside-out patches of membrane. beta gamma has been shown to activate the membrane-bound enzyme phospholipase A2 in retinal rods. Arachidonic acid, which is produced from the action of phospholipase A2 on phospholipids, is metabolized to compounds which may act as second messengers regulating ion channels in Aplysia. Muscarinic receptor activation leads to the generation of arachidonic acid in some cell lines. We therefore tested the hypothesis that beta gamma activates IK.ACh by stimulation of phospholipase A2. When patches were first incubated with antibody that blocks phospholipase A2 activity, or with the lipoxygenase inhibitor, nordihydroguaiaretic acid, beta gamma failed to activate IK.ACh. Arachidonic acid and several of its metabolites derived from the 5-lipoxygenase pathway, activated the channel. Blockade of the cyclooxygenase pathway did not inhibit arachidonic acid-induced channel activation. We conclude that the beta gamma-subunit of G-proteins activates IK.ACh by stimulating the production of lipoxygenase-derived second messengers.  相似文献   

14.
Subunits of guanine nucleotide regulatory proteins purified from bovine cerebral cortex were used to perfuse the intracellular surface of excised patches of chick embryonic atrial cells. Single-channel current measurements unexpectedly indicate that the beta gamma, and not the alpha subunits, are responsible for activating the muscarinic-gated potassium channel.  相似文献   

15.
J Lechleiter  S Girard  D Clapham  E Peralta 《Nature》1991,350(6318):505-508
Calcium release from intracellular stores is a point of convergence for a variety of receptors involved in cell signaling. Consequently, the mechanism(s) by which cells differentiate between individual receptor signals is central to transmembrane communication. There are significant differences in timing and magnitude of Ca2+ release stimulated by the m2 and m3 muscarinic acetylcholine receptors. The m2 receptors couple to a pertussis toxin-sensitive G protein to activate phosphatidyl inositol hydrolysis weakly and to stimulate small, delayed and oscillatory chloride currents. In contrast, m3 receptors potently activate phosphatidyl inositol hydrolysis and stimulate large, rapid and transient chloride currents by a pertussis toxin-insensitive G protein pathway. Using confocal microscopy, we now show that the m2- and m3-coupled Ca2+ release pathways can also be spatially distinguished. At submaximal acetylcholine concentrations, both receptors stimulated pulses of Ca2+ release from discrete foci in random, periodic and frequently bursting patterns of activity. But maximal stimulation of m2 receptors increased the number of focal release sites, whereas m3 receptors invariably evoked a Ca2+ wave propagating rapidly just beneath the plasma membrane surface. Analysis of pertussis toxin sensitivity and hybrid m2-m3 muscarinic acetylcholine receptors confirmed that these Ca2+ release patterns represent distinct cell signalling pathways.  相似文献   

16.
N T Ktistakis  M E Linder  M G Roth 《Nature》1992,356(6367):344-346
In many mammalian cells brefeldin A interferes with mechanisms that keep the Golgi appartus separate from the endoplasmic reticulum. The earliest effect of brefeldin A is release of the coat protein beta-COP from the Golgi. This release is blocked by pretreatment with GTP-gamma S or AlF4- (ref. 12). The AlF4- ion activates heterotrimeric G proteins but not proteins of the ras superfamily, suggesting that a heterotrimeric G protein might control membrane transfer from the endoplasmic reticulum to the Golgi. We report here that mastoparan, a peptide that activates heterotrimeric G proteins, promotes binding of beta-COP to Golgi membranes in vitro and antagonizes the effect of brefeldin A on beta-COP in perforated cells and on isolated Golgi membranes. This inhibition is greatly diminished if cells are pretreated with pertussis toxin before perforation. Thus, a heterotrimeric G protein of the Gi/Go subfamily regulates association of coat components with Golgi membranes.  相似文献   

17.
Subtractive complementary DNA cloning combined with partial protein sequencing has allowed identification of the genes encoding the alpha and beta subunits of T-cell receptors. The subtractive cDNA library prepared from the cytotoxic T lymphocyte (Tc) clone 2C has been found to contain a third type of clone encoding the gamma chain. The gamma gene shares several features with the alpha and beta genes: (1) assembly from gene segments resembling immunoglobulin V, J and C (respectively variable, joining and constant region) DNA segments; (2) rearrangement and expression in T cells and not in B cells; (3) sequences reminiscent of transmembrane and intracytoplasmic regions of integral membrane proteins; (4) a cysteine residue at the position expected for an interchain disulphide bond. The alpha and beta genes are expressed at equivalent levels in both Tc cells and helper T cells (TH). The gamma gene, obtained from 2C, has been found to be expressed in all Tc cells studied. Here we present evidence that strongly suggests that TH cells do not require gamma gene expression.  相似文献   

18.
Wolfe JT  Wang H  Howard J  Garrison JC  Barrett PQ 《Nature》2003,424(6945):209-213
Low-voltage-activated (LVA) T-type calcium channels have a wide tissue distribution and have well-documented roles in the control of action potential burst generation and hormone secretion. In neurons of the central nervous system and secretory cells of the adrenal and pituitary, LVA channels are inhibited by activation of G-protein-coupled receptors that generate membrane-delimited signals, yet these signals have not been identified. Here we show that the inhibition of alpha1H (Ca(v)3.2), but not alpha(1G) (Ca(v)3.1) LVA Ca2+ channels is mediated selectively by beta2gamma2 subunits that bind to the intracellular loop connecting channel transmembrane domains II and III. This region of the alpha1H channel is crucial for inhibition, because its replacement abrogates inhibition and its transfer to non-modulated alpha1G channels confers beta2gamma2-dependent inhibition. betagamma reduces channel activity independent of voltage, a mechanism distinct from the established betagamma-dependent inhibition of non-L-type high-voltage-activated channels of the Ca(v)2 family. These studies identify the alpha1H channel as a new effector for G-protein betagamma subunits, and highlight the selective signalling roles available for particular betagamma combinations.  相似文献   

19.
Purification of skeletal muscle dihydropyridine binding sites has enabled protein complexes to be isolated from which Ca2+ currents have been reconstituted. Complementary DNAs encoding the five subunits of the dihydropyridine receptor, alpha 1, beta, gamma, alpha 2 and delta, have been cloned and it is now recognized that alpha 2 and delta are derived from a common precursor. The alpha 1 subunit can itself produce Ca2+ currents, as was demonstrated using mouse L cells lacking alpha 2 delta, beta and gamma (our unpublished results). In L cells, stable expression of skeletal muscle alpha 1 alone was sufficient to generate voltage-sensitive, high-threshold L-type Ca2+ channel currents which were dihydropyridine-sensitive and blocked by Cd2+, but the activation kinetics were about 100 times slower than expected for skeletal muscle Ca2+ channel currents. This could have been due to the cell type in which alpha 1 was being expressed or to the lack of a regulatory component particularly one of the subunits that copurifies with alpha 1. We show here that coexpression of skeletal muscle beta with skeletal muscle alpha 1 generates cell lines expressing Ca2+ channel currents with normal activation kinetics as evidence for the participation of the dihydropyridine-receptor beta subunits in the generation of skeletal muscle Ca2+ channel currents.  相似文献   

20.
E C Wiener  W R Loewenstein 《Nature》1983,305(5933):433-435
The cell-to-cell permeability of the junctions of various cultured mammalian cell types depends on the concentration of intracellular cyclic AMP [( cAMP]i). The permeability rises when the cells are supplied with exogenous cyclic AMP or when their cyclic AMP synthesis is stimulated with choleragen or hormones; it falls when [cAMP]i is lowered by application of serum or due to increase in cell density. The rise and fall in permeability take several hours to develop (the rise is protein synthesis-dependent) and they occur concurrently with the rise and fall in the number of intramembrane particles of the gap junctions, which probably embody the cell-to-cell channels. Is this permeability regulation mediated by phosphorylating protein kinase? In many eukaryotes, the cyclic AMP receptor is a protein kinase consisting of a pair of regulatory subunits and a pair of catalytic subunits. The latter dissociate from the holoenzyme as the cyclic AMP binds to the regulatory subunits and, in this dissociated form, catalyse the phosphorylation of the target. The regulatory subunit occurs in two isoenzyme forms, I and II. The catalytic subunit seems invariant; subunits from different isoenzymes can substitute for each other. We show here that a mutant cell lacking the isoenzyme I is deficient in permeable junctions, and that this junctional defect is corrected when the mutant is supplied with exogenous catalytic subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号