首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Giardia intestinalis (syn. lamblia) is one of the most widespread intestinal protozoan pathogens worldwide, causing hundreds of thousands of cases of diarrhoea each year. Giardia is a member of the diplomonads, often described as an ancient protist group whose primitive nature is suggested by the lack of typical eukaryotic organelles (for example, mitochondria, peroxisomes), the presence of a poorly developed endomembrane system and by their early branching in a number of gene phylogenies. The discovery of nuclear genes of putative mitochondrial ancestry in Giardia and the recent identification of mitochondrial remnant organelles in amitochondrial protists such as Entamoeba histolytica and Trachipleistophora hominis suggest that the eukaryotic amitochondrial state is not a primitive condition but is rather the result of reductive evolution. Using an in vitro protein reconstitution assay and specific antibodies against IscS and IscU--two mitochondrial marker proteins involved in iron-sulphur cluster biosynthesis--here we demonstrate that Giardia contains mitochondrial remnant organelles (mitosomes) bounded by double membranes that function in iron-sulphur protein maturation. Our results indicate that Giardia is not primitively amitochondrial and that it has retained a functional organelle derived from the original mitochondrial endosymbiont.  相似文献   

2.
Russell AG  Charette JM  Spencer DF  Gray MW 《Nature》2006,443(7113):863-866
The minor spliceosome is a ribonucleoprotein complex that catalyses the removal of an atypical class of spliceosomal introns (U12-type) from eukaryotic messenger RNAs. It was first identified and characterized in animals, where it was found to contain several unique RNA constituents that share structural similarity with and seem to be functionally analogous to the small nuclear RNAs (snRNAs) contained in the major spliceosome. Subsequently, minor spliceosomal components and U12-type introns have been found in plants but not in fungi. Unlike that of the major spliceosome, which arose early in the eukaryotic lineage, the evolutionary history of the minor spliceosome is unclear because there is evidence of it in so few organisms. Here we report the identification of homologues of minor-spliceosome-specific proteins and snRNAs, and U12-type introns, in distantly related eukaryotic microbes (protists) and in a fungus (Rhizopus oryzae). Cumulatively, our results indicate that the minor spliceosome had an early origin: several of its characteristic constituents are present in representative organisms from all eukaryotic supergroups for which there is any substantial genome sequence information. In addition, our results reveal marked evolutionary conservation of functionally important sequence elements contained within U12-type introns and snRNAs.  相似文献   

3.
通过分析黑腹果蝇种组(Drosophila melanogasterspecies group)9个种亚组代表种和D.pseudoobscura的组蛋白基因H2A和H2B的内含子的碱基组成、替换速率、转换/颠换比、二级结构和系统发育关系等发现:整个序列长度变异范围在201 bp(ficusphila)到232 bp(takahashii)之间,替换速率为0.82,转换明显高于颠换,内含子和外显子结合区不遵循“GT-AG”和“AT-AC”模式,而是“TT-AG”模式,二级结构与系统分化关系具有相关性.我们认为组蛋白基因H2A和H2B的内含子是先起源的,在进化过程中由于承受的选择压力不同而发生了变异.  相似文献   

4.
Alternative pre-mRNA splicing and proteome expansion in metazoans   总被引:77,自引:0,他引:77  
Maniatis T  Tasic B 《Nature》2002,418(6894):236-243
The protein coding sequences of most eukaryotic messenger RNA precursors (pre-mRNAs) are interrupted by non-coding sequences called introns. Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing selectively joins different protein coding elements to form mRNAs that encode proteins with distinct functions, and is therefore an important source of protein diversity. The elaboration of this mechanism may have had a significant role in the expansion of metazoan proteomes during evolution.  相似文献   

5.
Self-splicing introns in tRNA genes of widely divergent bacteria.   总被引:16,自引:0,他引:16  
B Reinhold-Hurek  D A Shub 《Nature》1992,357(6374):173-176
The organization of eukaryotic genes into exons separated by introns has been considered as a primordial arrangement but because it does not exist in eubacterial genomes it may be that introns are relatively recent acquisitions. A self-splicing group I intron has been found in cyanobacteria at the same position of the same gene (that encoding leucyl transfer RNA, UAA anticodon) as a similar group I intron of chloroplasts, which indicates that this intron predates the invasion of eukaryotic cells by cyanobacterial endosymbionts. But it is not clear from this isolated example whether introns are more generally present in different genes or in more diverse branches of the eubacteria. Many mitochondria have intron-rich genomes and were probably derived from the alpha subgroup of the purple bacteria (or Proteobacteria), so ancient introns might also have been retained in these bacteria. We describe here the discovery of two small (237 and 205 nucleotides) self-splicing group I introns in members of two proteobacterial subgroups, Agrobacterium tumefaciens (alpha) and Azoarcus sp. (beta). The introns are inserted in genes for tRNA(Arg) and tRNA(Ile), respectively, after the third anticodon nucleotide. Their occurrence in different genes of phylogenetically diverse bacteria indicates that group I introns have a widespread distribution among eubacteria.  相似文献   

6.
E M Stone  K N Rothblum  R J Schwartz 《Nature》1985,313(6002):498-500
The function of introns in the evolution of genes can be explained in at least two ways: either introns appeared late in evolution and therefore could not have participated in the construction of primordial genes, or RNA splicing and introns existed in the earliest organisms but were lost during the evolution of the modern prokaryotes. The latter alternative allows the possibility of intron participation in the formation of primordial genes before the divergence of modern prokaryotes and eukaryotes. Blake suggested that evidence for intron-facilitated evolution of a gene might be found by comparing the borders of functional protein domains with the placement of introns. We therefore examined glyceraldehyde phosphate dehydrogenase (GAPDH), a glycolytic enzyme, because it is the first protein for which the following data are available: X-ray crystallographic studies demonstrating structurally independent protein 'domains' which were highly conserved during the divergence of prokaryotes and eukaryotes; and a study of genomic organization which mapped introns in the gene. Sequencing of the chicken GAPDH gene revealed 11 introns. We report here that sites of three of the introns (IV, VI and XI) correspond closely with the borders of the NAD-binding, catalytic and helical tail domains of the enzyme, supporting the hypothesis that introns did have a role in the evolution of primitive genes. In addition, other biochemical and structural data were used to construct a model of the intron-mediated assembly of the GAPDH gene that explains the existence of 10 introns.  相似文献   

7.
The intron is an important component of eukaryotic gene. Extensive studies have been conducted to get a better understanding of its structure and function. This paper presents a brief review of the structure and function of introns in higher plant genes. It is shown that higher plant introns possess structural properties shared by all eukaryotic introns, however, they also exhibit a striking degree of diversity. The process of intron splicing in higher plant genes involves interaction between multiple cis-acting elements and trans-acting factors, such as 5′ splicing site, 3′ splicing site and many protein factors. The process of intron splicing is an important level at which gene expression is regulated. Especially alternative splicing of intron can regulate time and space of gene expression. In addition, some introns in higher plant genes also regulate gene expression by affecting the pattern of gene expression, enhancing the level of gene expression and driving the gene expression.  相似文献   

8.
Intronic microRNA precursors that bypass Drosha processing   总被引:2,自引:0,他引:2  
Ruby JG  Jan CH  Bartel DP 《Nature》2007,448(7149):83-86
  相似文献   

9.
E M Mota  R A Collins 《Nature》1988,332(6165):654-656
The discovery of intervening sequences (introns) in eukaryotic genes has raised questions about the origin and evolution of these sequences. Hypotheses concerning these topics usually consider the intron as a unit that could be lost or gained over time, or as a region within which recombination can occur to facilitate the production of new proteins by exon shuffling. Additional complexities are observed in introns of mitochondrial and chloroplast genes which contain secondary structures required for messenger RNA splicing and open-reading frames encoding proteins. Here we describe differences in the organization of protein-coding sequences in the intron of the mitochondrial ND1 gene in two closely related species of Neurospora. These differences show that intron sequences involved in secondary structure formation and in protein coding can evolve as physically distinct elements. Indeed, the secondary structure elements of the ND1 intron can contain two different coding sequences located at two different positions within the intron.  相似文献   

10.
Nucleotide sequence of the rat skeletal muscle actin gene   总被引:56,自引:0,他引:56  
R Zakut  M Shani  D Givol  S Neuman  D Yaffe  U Nudel 《Nature》1982,298(5877):857-859
The actins constitute a family of highly conserved proteins found in all eukaryotic cells. Their conservation through a very wide range of taxonomic groups and the existence of tissue-specific isoforms make the actin genes very interesting for the study of the evolution of genes and their controlling elements. On the basis of amino acid sequence data, at least six different mammalian actins have been identified (skeletal muscle, cardiac muscle, two smooth muscle actins and the cytoplasmic beta- and gamma-actins). Rat spleen DNA digested by the EcoRI restriction enzyme contains at least 12 different fragments with actin-like sequences but only one which hybridized, in very stringent conditions, with the skeletal muscle cloned cDNA probe. Here we describe the sequence of the actin gene in that fragment. The nucleotide sequence codes for two amino acids, Met-Cys, preceding the known N-terminal Asp of the mature protein. There are five small introns in the coding region and a large intron in the 5'-untranslated region. Comparison of the structure of the rat skeletal muscle actin gene with available data on actin genes from other organisms shows that while the sequenced actin genes from Drosophila and yeast have introns at different locations, introns located at codons specifying amino acids 41, 121, 204 and 267 have been preserved at least from the echinoderm to the vertebrates. A similar analysis has been done by Davidson. An intron at codon 150 is common to a plant actin gene and the skeletal muscle acting gene.  相似文献   

11.
The highly reduced genome of an enslaved algal nucleus   总被引:34,自引:0,他引:34  
Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.  相似文献   

12.
基因组的进化与内含子中的基因的进化   总被引:2,自引:0,他引:2  
论述了基因组整体进化过程中内含子所含的基因的进化.分析了内含子的起源方式与内含子中的基因种类的关系,并结合基因组在大小、组成等方面进化过程中内含子的演化趋势,探讨了内含子中的基因,特别是核仁小分子RNA基因的进化规律.同时,对于内含子中的基因的进化,提出了一些可能的途径.  相似文献   

13.
Spontaneous shuffling of domains between introns of phage T4   总被引:2,自引:0,他引:2  
M Bryk  M Belfort 《Nature》1990,346(6282):394-396
The three self-splicing introns in phage T4 (in the td, sunY and nrdB genes) (Fig. 1a) each have the conserved group I catalytic RNA core structure (Fig. 1b), out of which is looped an open reading frame. Although the core sequences are very similar (approximately 60% identity), the open reading frames seem to be unrelated. Single crossover recombination events between homologous core sequences in the closely linked td and nrdB introns have led to 'exon shuffling. Here we describe spontaneous double crossovers between the unlinked td and sun Y introns that result in shuffling of an intron structure element, P7.1 (refs 3 and 4). The intron domain-switch variants were isolated as genetic suppressors of a splicing-defective P7.1 deletion in the td intron. This unprecedented example of suppression through inter-intron sequence substitution indicates that the introns are in a state of genetic flux and implies the functional interchangeability of the two analogous but nonidentical P7.1 elements. The implications of such recombination events are discussed in the light of the evolution of the introns themselves as well as that of their host genomes.  相似文献   

14.
We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.  相似文献   

15.
Retrotransposition of a bacterial group II intron   总被引:13,自引:0,他引:13  
Cousineau B  Lawrence S  Smith D  Belfort M 《Nature》2000,404(6781):1018-1021
  相似文献   

16.
Antibiotic inhibition of group I ribozyme function   总被引:21,自引:0,他引:21  
U von Ahsen  J Davies  R Schroeder 《Nature》1991,353(6342):368-370
The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.  相似文献   

17.
用工具制造工具是人的工具行为和猿的工具行为之间的界河,据此将人猿超科的工具行为分成简单复杂二种类型。粗壮南猿以前的人科成员具有简单工具行为的能力。早期人科的工具行为成为推动人科 立行走方向发展的因素之一。  相似文献   

18.
Boudvillain M  de Lencastre A  Pyle AM 《Nature》2000,406(6793):315-318
Group II introns are self-splicing RNAs that are commonly found in the genes of plants, fungi, yeast and bacteria. Little is known about the tertiary structure of group II introns, which are among the largest natural ribozymes. The most conserved region of the intron is domain 5 (D5), which, together with domain 1 (D1), is required for all reactions catalysed by the intron. Despite the importance of D5, its spatial relationship and tertiary contacts to other active-site constituents have remained obscure. Furthermore, D5 has never been placed directly at a site of catalysis by the intron. Here we show that a set of tertiary interactions (lambda-lambda') links catalytically essential regions of D5 and D1, creating the framework for an active-site and anchoring it at the 5' splice site. Highly conserved elements similar to components of the lambda-lambda' interaction are found in the eukaryotic spliceosome.  相似文献   

19.
D H Hall  Y Liu  D A Shub 《Nature》1989,340(6234):575-576
The organization of genes into exons separated by introns may permit rapid evolution of protein-coding sequences by exon shuffling. Introns could provide non-coding targets for recombination, which would then give rise to novel combinations of exons. Evidence to support this theory is indirect and consists of examples of homologous domains of protein structure encoded in different genes, with introns in conserved positions at the boundaries of these domains. Here, we report the first direct evidence for exon shuffling. Two spontaneous deletion mutations of phage T4 have been characterized by sequencing, and they are clearly the result of recombination between homologous regions of two self-splicing group I introns. As a result of the recombination, exons of different genes are transcribed together, with a hybrid intron between them. One of these introns is proficient in self-splicing.  相似文献   

20.
Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号