首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
以妥尔油酸分别与二乙烯三胺合成妥尔油咪唑啉缓蚀剂,再用氯化苄改性制得咪唑啉衍生物(TOID)。本文采用红外及紫外对测定咪唑啉中间体及TOID的结构;通过静态失重法、旋转挂片失重法及电化学方法考察TOID在1000 mg/L HCl+200 mg/L H2S介质中的缓蚀性能,并用扫描电镜观察试片的腐蚀形貌。实验结果表明:TODI浓度为50 mg/L,腐蚀温度为80℃,缓蚀时间为6 h,搅拌速度为45r/min时,TODI的缓蚀率达到95.96%。  相似文献   

2.
由油酸、多胺及改性试剂合成了4种咪唑啉衍生物。通过静态挂片失重法评价了咪唑啉缓蚀剂在不同矿化度的模拟盐水、饱和CO2的模拟盐水以及油田回注污水中对A3碳钢腐蚀的抑制作用。实验结果表明,所合成的咪唑啉缓蚀剂可以抑制溶解氧的腐蚀,对CO2的腐蚀抑制效果更好,10mg/L缓蚀剂D缓蚀率达95.36%。腐蚀介质的矿化度对缓蚀效果有一定影响,矿化度在10000~70000mg/L变化时,缓蚀率波动在10%~15%。油田回注污水实验表明咪唑啉型缓蚀剂适合应用于现场,尤其是偏酸性水质,腐蚀速率满足小于0.076mm/a的油田标准。  相似文献   

3.
环烷酸和羟乙基乙二胺经两步缩合脱水反应生成咪唑啉中间体.再以甲苯为携水剂,用硼酸与该中间体制得环烷酸咪唑啉硼酸酯(NIB),用红外光谱对产品进行了表征.采用静态挂片法对NIB在酸性溶液中的缓蚀性能进行评价.实验结果表明:NIB在酸性溶液中对碳钢挂片、铝挂片、不锈钢具有良好的缓蚀效果.电化学极化曲线得到的结果与失重法定结果一致.NIB缓蚀率随温度先升高后降低;随时间延长缓蚀率先升高后降低.  相似文献   

4.
咪唑啉季铵盐缓蚀剂的合成及应用性能评价   总被引:2,自引:0,他引:2  
以腐蚀速率为评价指标,以原料配比、反应时间、催化剂加量为考察因素,采用正交实验设计,得到了咪唑啉季铵盐缓蚀剂的最佳合成条件:苯甲酸与三乙烯四胺物质的量比为2∶1,先在140~160℃经缩合脱水反应2 h,再升温至220~250℃环化脱水反应2 h,得到咪唑啉中间体;然后使中间体与氯化苄在90℃左右反应4 h,得到咪唑啉季铵盐缓蚀剂主剂.将主剂与表面活性剂和溶剂复配,得到酸化缓蚀剂.采用静态挂片失重法和电化学方法考察了该缓蚀剂的缓蚀性能.结果显示:缓蚀剂质量分数为1%时,N80钢在90℃体积分数为15%的HCl介质中,缓蚀率为97%;缓蚀剂是以抑制阳极为主的混合型缓蚀剂.  相似文献   

5.
分别使用硫酸二乙酯、氯化苄和冰醋酸三种季铵化试剂对由油酸、二乙烯三胺合成的咪唑啉进行季铵化,使用动态失重法对比了它们在CO2腐蚀环境中对Q235钢的缓蚀性能,并用电化学方法研究了缓蚀机理。结果表明:使用硫酸二乙酯合成的咪唑啉季铵盐BMI-D比其他两种咪唑啉季铵盐具有更好的缓蚀效果;BMI-D与烷基酚聚氧乙烯醚的最佳质量分数配比为2∶1时可制得复合缓蚀剂BMI-DA,当BMI-DA质量浓度为100mg/L时,缓蚀率可达到97.55%;BMI-DA是以控制阳极过程为主的混合型缓蚀剂。  相似文献   

6.
新型咪唑啉化合物的合成及缓蚀性能测试   总被引:1,自引:0,他引:1  
合成了一种新型取代基咪唑啉化合物IM ,经复配后得到新型咪唑啉缓蚀剂IMC。用电化学和失重法测试了缓蚀剂IMC在强酸性介质中的缓蚀性能。在多种腐蚀介质中的缓蚀效果测试结果表明 ,该缓蚀剂可适用于酸性腐蚀介质 ,并具有很好的防腐效果 ,其缓蚀率在 92 %~ 98%  相似文献   

7.
松香改性油酸基咪唑啉季铵盐的缓蚀性能   总被引:1,自引:0,他引:1  
以不同配比的油酸和松香作为原料酸,在一定条件下与二乙烯三胺合成咪唑啉中间体,并用氯化苄进行季铵化得到松香改性油酸基咪唑啉季铵盐.利用红外光谱对产品的结构进行分析,并用静态质量损失法测定产物在盐酸介质中对Q235钢的缓蚀率.结果表明,合成高性能的咪唑啉季铵盐所用的最佳工艺条件为:原料酸中松香摩尔分数20%、二乙烯三胺与酸的摩尔比1.4~1.5、反应温度170~180℃、回流时间4h;当咪唑啉季铵盐作为缓蚀剂加入质量分数达到0.3%~0.4%时,可发挥其最佳缓蚀性能.  相似文献   

8.
以地沟油,二乙烯三胺为原料,经过酰胺化,环化反应合成油溶性烷基咪唑啉缓蚀剂,利用傅里叶红外光谱对其结构进行表征,测定反应过程中的胺值,通过失重法考察其缓蚀性能。结果表明,缓蚀剂合成过程中反应温度140℃,时间2h,物料配比1:1.2时,反应产物的收率达到71.57%。缓蚀剂在添加量为70mg/L,测试温度为40℃,转速为30r/min及时间为8h的情况下,可以达到最佳的缓蚀效果,其缓蚀率最高可以达到98.47%。远超过市场一般类型的缓蚀剂。  相似文献   

9.
新型咪唑啉化合物的合成及缓蚀性能测试   总被引:6,自引:0,他引:6  
合成了一种新型取代基咪唑啉化合物IM,经复配后得到新型咪唑啉缓蚀剂IMC。用电化学和失重法测试了缓蚀剂IMC在强酸性介质中的缓蚀性能。在多种腐蚀介质中的缓蚀效果测试结果表明,该缓蚀剂可适用于酸性腐蚀介质,并具有很好的防腐效果,其缓蚀率在92%-98%。  相似文献   

10.
双咪唑啉季铵盐缓蚀剂的合成及性能研究   总被引:1,自引:0,他引:1  
将月桂酸、二乙烯三胺、碳酸二甲酯等作为原料合成一种双子咪唑啉季铵盐类化合物,并在3.5%Na Cl溶液中通过静态失重法测定该缓蚀剂对马口铁片的缓蚀能力,考察了缓蚀剂浓度、温度等因素对其缓蚀性能的影响。通过Tafel曲线和交流阻抗的测定,对其缓蚀性能进行进一步考察。结果表明双子咪唑啉缓蚀剂在3.5%NaCl溶液的腐蚀环境中对马口铁片具有好的缓蚀效果。当温度T为30℃,缓蚀剂浓度为50 mg/L时,其缓蚀率最大可到91.25%。Tafel曲线表明缓蚀剂浓度增加,其腐蚀电位会向正电位方向移动,且自腐蚀电流密度也在很大程度上随之降低,缓蚀率在增加。从交流阻抗谱的阻值半径可知当缓蚀剂浓度为50 mg/L时得到的阻抗谱半径最大,说明在这一浓度下,腐蚀速率最小,缓蚀效果最优。  相似文献   

11.
本文探讨了2-取代咪唑啉衍生物的三种合成方法。其中苯硫脲和二氯异氰酸苯酯路线,对2,6-二取代苯胺的收率仅40%,且有甲硫醇、二氧化硫等毒气放出。咪唑烷酮路线,不仅收率高达70%以上,而且对环境友好。建议生产厂家采用咪唑烷酮路线合成2-取代咪唑衍生物。  相似文献   

12.
以月桂酸,β-羟乙基乙二胺合成了月桂咪唑啉,阐述了反应原理,并对其硼酸衍生物的反应条件进行了探讨。  相似文献   

13.
双阳离子表面活性剂DC-12的新合成法   总被引:1,自引:0,他引:1  
提出了经咪唑啉中间体制备双阳离子表面活性剂DC-12的一种新合成方法,并对咪唑啉还原开环反应及DC-12的其他合成路线进行了讨论。  相似文献   

14.
新型阳离子柔软剂的合成   总被引:5,自引:0,他引:5  
以苯乙酸和二亚乙基三胺为原料 ,通过咪唑啉的还原开环反应制得 4-苯乙基二亚乙基三胺 ,接着分别与硬脂酸、环氧氯丙烷发生酰胺化、季铵化反应 ,得到一种未报道的含有活泼环氧基和双长链烷基的新型阳离子柔软剂  相似文献   

15.
以椰油酸和二乙烯三胺为反应物、二甲苯为携水剂,制备了烷基咪唑啉类缓蚀剂,研究了该缓蚀剂的制备工艺、分子结构与在锅炉水系统的缓蚀性能的关系。结果表明,温度、反应时间和反应物比例是合成产率的关键因素,烷基咪唑啉衍生物在锅炉水中对碳钢的缓蚀率可达80%以上,缓蚀剂强烈地抑制了腐蚀的阳极溶解过程,对阴极去极化过程也有一定的抑制作用,可认为是碳钢的以阳极为主的混合性缓蚀剂。该缓蚀剂抑制腐蚀的原因是在碳钢表面缓蚀剂吸附成膜,有效阻挡了钢表面与水的接触。  相似文献   

16.
咪唑啉缓蚀剂合成过程中成环程度与其性能的关系   总被引:10,自引:0,他引:10  
以油酸、二乙烯三胺为原料在160 ℃经不同反应时间合成了系列咪唑啉,应用红外光谱、紫外分光光度法对合成产物进行了鉴定和分析,测定了不同反应时间的产水率和产物的酸值,并通过极化曲线考察了产物的缓蚀性能.结果表明:咪唑啉合成过程中,烷基酰胺的生成和烷基酰胺的环化是同时进行的;反应时间越长,烷基酰胺环化程度越高,产物的缓蚀性能越好;通过比较添加缓蚀剂前后A3钢的极化曲线可以看出,添加缓蚀剂后自腐蚀电位正移,说明咪唑啉主要抑制阳极过程而起到缓蚀作用,属于阳极型缓蚀剂.  相似文献   

17.
合成了一种油酸基咪唑啉类缓蚀剂,用紫外-可见分光光度法测定其最佳吸收波长为232 nm。根据咪唑啉在水解过程中最佳吸收波长处的吸光度值会发生变化的现象,研究咪唑啉类缓蚀剂在不同温度、不同pH和不同浓度条件下随时间的水解过程变化。实验结果表明:随着温度升高,咪唑啉水解速率加快,水解程度增大;酸性环境抑制咪唑啉的水解,而碱性环境则加速咪唑啉的水解;低浓度时咪唑啉水解速率较快,浓度对水解程度的影响不大。红外分析得到的结果证实了在高温碱性环境中8 h后咪唑啉已经完全水解为酰胺。  相似文献   

18.
在不同条件下考察了苯甲酸与乙二胺的反应 ,对反应产物、主要副产物及反应中间体进行了分离和鉴定 ,通过熔点测定、元素分析和红外光谱分析 ,确定了产物为 2 -苯基咪唑啉 ,主要副产物为二苯甲酰乙二胺 ,中间体之一为乙二胺与苯甲酸形成的双盐 .试验发现在不同溶剂中反应的产物和副产物的比例 ,产物纯度相差很大 .对反应机理及溶剂效应进行了讨论 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号