首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 343 毫秒
1.
采用真空射频溅射的方法制备涂层微磨具,探讨了微磨具表面涂层制备机理,针对黄铜材料进行涂层微磨具的磨削表面质量实验研究,分析不同加工工艺参数和因素对涂层微磨具磨削表面性能的影响规律.实验结果表明,随着不同涂层微磨具磨削速度的增大,磨削深度和进给速度的减小,黄铜表面粗糙度呈现减小的趋势,表面形貌更加光滑,表面质量更好;在相同的磨削工艺参数下,与未涂层微磨具相比,涂层微磨具的磨削力值更低;相同粒度的涂层微磨具和未涂层微磨具比较,涂层微磨具表面粘结磨屑现象得到改善,在一定程度上增加了涂层微磨具的使用寿命.  相似文献   

2.
对钠钙玻璃进行磨削实验,研究了磨削参数对加工后钠钙玻璃表面粗糙度和形貌的影响.探讨了不同涂层微磨具磨削后已加工表面形貌和不同冷却条件下表面的粗糙度.实验结果表明:随磨削速度的增加,磨削深度和进给速度减小,已加工表面粗糙度减小,表面形貌更光滑、质量更好.在不同冷却条件下,湿磨已加工表面粗糙度值更低,表面质量更好.相同粒度的CBN微磨具和金刚石微磨具相比,金刚石涂层微磨具加工表面质量更好,更适宜对玻璃等硬脆材料进行磨削加工.  相似文献   

3.
为了解决陶瓷结合剂cBN磨具在高速磨削的过程中易发生断裂以至于失效的问题,提高cBN磨具材料的磨削性能,采用微氧化技术对cBN磨粒进行了表面处理,研究了cBN磨粒表面微氧化对cBN磨具中磨粒与结合剂间界面结合方式、界面结合力、磨具强度以及磨具磨削磨损的影响规律,并分析了磨具磨削磨损失效机制。结果表明:表面微氧化后的cBN磨粒表面氧化膜的成分是B2O3;因B2O3与结合剂组分发生反应致使结合面两侧产生元素互扩散,使得陶瓷结合剂与cBN磨粒界面间的机械结合方式转为化学结合方式;与cBN磨粒未经过氧化的磨具相比,经过表面氧化的cBN磨粒制备的磨具中陶瓷结合剂与cBN磨粒结合面剪切力提高了2.5倍,磨具抗弯强度提高了18%,且磨削磨损性能提高了2.6倍;cBN磨粒与结合剂结合力的提高可以使磨具强度提高,磨具磨削磨损时随着磨削力增大磨粒不易脱落,并逐渐发生自锐,从而降低磨具的损耗,提高磨削效率。  相似文献   

4.
氧化锆陶瓷磨削机理有限元仿真与实验   总被引:1,自引:0,他引:1  
目的研究氧化锆陶瓷材料在高速磨削条件下的去除机理,优化磨削参数,提高磨削效率.方法将单颗金刚石磨粒简化成圆锥形和三棱柱形两种形状,进行氧化锆陶瓷的磨削仿真,分析了磨削深度和磨削速度两个因素对磨削力和磨削表面形貌的影响.通过对氧化锆陶瓷进行内圆磨削加工实验,并获取相应的磨削力数据与表面形貌图像,对比仿真结果,证明了理论分析的正确性.结果随着磨削深度从1μm到9μm,磨削速度从23.0 m/s到74.9 m/s的增大,单颗磨粒磨削力呈单调递增的趋势,工件表面质量逐渐恶化.结论提高砂轮转速,降低磨削深度,有助于减小磨削力,提高磨削表面质量;在磨削深度、磨削速度两个因素当中,磨削速度对单颗磨粒磨削力及磨削表面质量的影响更大.  相似文献   

5.
针对TC4钛合金和H62黄铜两种典型塑性材料进行了微尺度磨削试验研究,利用超景深显微镜与三维轮廓仪对微磨削加工表面的微观形貌进行了分析,从理论上介绍了微磨削表面形成机理以及最小切屑厚度效应.根据微磨削加工的特点,选用不同的加工参数进行单因素试验和正交试验,主要探讨了微尺度磨削速度、磨削深度及进给速度对塑性材料微磨削表面质量的影响;对比分析不同磨棒头直径、不同粒度的微磨棒以及不同磨削方式对试件加工表面质量的影响.研究表明,微磨削中工件表面粗糙度随磨削深度的增加有先减小后增大的趋势,侧磨的加工质量比槽磨的质量好.  相似文献   

6.
研究砂带磨削U71Mn钢轨试件的加工行为可为钢轨打磨提供基础试验数据支撑,并能探讨研发新型钢轨打磨技术关键问题.本文借助砂带试验机开展了磨削钢轨试件的加工试验,研究了砂带磨削速度、磨粒粒度等因素对材料去除效率、表面层硬度、表面粗糙度、磨削比、磨削力比的影响规律,试验表明:材料去除效率并非与砂带速度呈线性关系,较粗的磨粒与合适的砂带速度可提高材料去除效率;砂带磨削可不同程度地提高钢轨试件表层硬度,磨削速度越高、磨粒粒度越粗,对钢轨试件表面层硬化程度越明显;相比磨粒粒度而言,砂带磨削速度对表面粗糙度的影响较小;针对磨削比这一重要指标,砂带比砂轮呈现了较为明显的效益优势;磨削力比过程数据表明其变化趋势可用于表征砂带磨损.  相似文献   

7.
为研究正前角金刚石磨粒磨削加工的机理,论证正前角磨削的可行性,采用有限元仿真软件ABAQUS建立单颗金刚石磨粒磨削Ti6Al4V钛合金过程的模型,对比研究不同工艺条件下具有正、负前角的单颗金刚石磨粒磨削过程中磨削力的变化规律.在此基础上,分别针对飞秒激光加工的正前角金刚石磨粒和原始的负前角金刚石磨粒开展钛合金磨削试验,采用测力仪测量磨削力,并将测得的磨削力与仿真结果进行对比;观测磨削加工表面形貌,测量表面粗糙度,将正、负前角磨削时的磨削力、磨削加工表面形貌和表面粗糙度进行对比.结果表明,在单颗金刚石磨粒磨削中,磨削力随着磨削速度的增大而减小,随着磨削深度的增加而增大,随着磨粒前角由负到正而逐渐减小,仿真得到的磨削力与试验结果的变化趋势基本吻合.相比于传统的负前角磨削,正前角金刚石磨粒具备良好的耐磨性,磨削表面磨痕较浅、加工缺陷少,表面粗糙度值降低58%~66%,可有效提高磨削加工表面质量.  相似文献   

8.
采用机械臂对花岗岩进行加工试验,测量磨削力,观察工具磨损,分析磨削力随时间和位置的变化及工具磨损特性.结果表明:随着加工的进行,磨削力随之增加,z方向的磨削力明显大于x,y方向的磨削力;磨削工具观察到镀层剥落、磨粒磨平、微破碎和宏观破碎几种失效形式;同一节块上的切入部位磨损严重,出露高度降低速率最快,切出部位最慢;工具的磨损与磨削力之间相互影响,随着工具失效增加,磨削力随之增加.  相似文献   

9.
通过磨削试验,研究钎焊金刚石砂轮磨削4032铝合金(AA4032)在不同磨削参数时的磨削特性.结果表明:磨削力和磨削表面粗糙度都随着磨削深度和工件进给速度的增加而增大,随着砂轮线速度的增加而减小;法向磨削力与切向磨削力有良好的线性关系,其力比为2.6;AA4032主要以塑性方式去除,其被加工表面由光滑区、划痕、磨屑粘附、白色析出颗粒及孔组成,表面质量随磨削速度增大而明显提高;磨削比能随单颗磨粒切削厚度(hc,max)增大而减小,在相同hc,max下,高速磨削有利于降低磨削能耗.  相似文献   

10.
为提高氧化锆陶瓷零件微细加工过程中的加工表面质量,改善氧化锆陶瓷零件的使用寿命,采用0.9mm磨头直径、500#磨粒的微磨棒对氧化锆陶瓷进行微尺度磨削三因素五水平正交试验.首先通过极差和方差分析,研究了磨削参数影响氧化锆陶瓷表面质量主次因素;其次优化出获得较低表面粗糙度值的工艺参数组合;最后通过单因素试验研究氧化锆陶瓷磨削表面粗糙度随磨削参数的变化规律.结果表明,磨削参数对表面粗糙度影响顺序依次为:磨削深度、进给速度、主轴转速;当主轴转速v○s=40000r/min,进给速度vw=20μm/s,磨削深度a○p=3μm时,表面粗糙度最小;表面粗糙度随主轴转速增大呈先下降后上升的趋势,随进给速度和磨削深度的增大而增大.  相似文献   

11.
微尺度铣磨复合加工是一种兼具微铣削与微磨削特点的新型加工工艺.为给微铣磨复合刀具参数优化提供理论依据和数据参考,用立方氮化硼(CBN)微铣磨复合刀对不同材料进行微铣磨复合加工试验,并与微铣削加工进行对比,研究刀具直径和磨粒粒度对工件表面质量的影响规律.结果表明:选择合适的刀具参数能使微铣磨复合加工表面粗糙度达到亚微米级,且优于微铣削表面质量;在一定范围内减小磨粒粒径或增大刀具直径能够提高微铣磨复合加工的表面质量,且磨料粒度对表面粗糙度的影响更为显著.  相似文献   

12.
基于带有圆弧刃角的圆锥状磨粒形状和突出高度服从瑞利分布的假设,建立单颗磨粒未变形切削厚度数学模型.根据微磨削力的三种不同来源,以单颗磨粒为研究对象,建立磨削过程中单颗磨粒的切削变形力、耕犁力和摩擦力理论模型.结合单位面积内的磨粒数目,建立微磨削力的理论模型.切向磨削力和法向磨削力预测模型的验证结果表明:切向磨削力理论值与实验值平均误差为7.32%,最大误差小于10%;法向磨削力的平均误差为8.18%,最大误差小于20%.  相似文献   

13.
为探究镍基高温合金的微尺度磨削表面质量,首先采用0.9 mm磨头直径、500#磨粒的微磨棒对典型镍基高温合金材料K445进行微尺度磨削三因素五水平正交试验.通过极差分析找出影响微磨削表面质量的主次因素:进给速度的影响最大、主轴转速次之、磨削深度的影响最小;优化出了微磨削K445的理想工艺组合,即进给速度fm=20μm/s、磨削深度ap=6μm、主轴转速vg=58 kr/min时,加工表面粗糙度最小,Ra为462 nm.其次通过单因素实验总结出了进给速度、磨削深度、主轴转速及微磨棒悬伸量对K445磨削表面质量的影响规律,并对其原因进行了深入分析,使之为镍基高温合金微小零件的加工提供重要的理论依据.  相似文献   

14.
采用正交实验研究了工艺参数对石英玻璃激光热辅助磨削后的表面粗糙度、表面形貌和砂轮磨损情况的影响.结果表明:激光热辅助磨削可以提高临界磨削深度、石英玻璃的表面磨削质量及效率.激光功率对激光热辅助磨削表面粗糙度影响最大,但不呈线性关系,最优激光功率为175W,对应粗糙度为0.262.通过激光辅助,实验过程中玻璃脆性下降,塑性提高,实现了石英玻璃的塑性域磨削,减轻砂轮磨损,降低了磨削表面的剥落坑.  相似文献   

15.
镍基单晶高温合金微尺度磨削温度仿真   总被引:1,自引:0,他引:1  
针对镍基单晶高温合金具有较强各向异性以及镍基单晶高温合金微尺度磨削温度场研究较少的情况,建立了基于Hill模型的三维磨削温度仿真模型,并采用任意拉格朗日-欧拉法(ALE),实现单晶材料微磨削过程有限元温度仿真,分析微磨削过程中的温度场分布及其变化情况,研究了不同磨削深度、磨削速度以及不同晶面(100),(110)和(111)对微磨削温度的影响规律.结果显示:微磨削高温区发生在磨粒前表面与工件接触的半椭圆形区域,即第Ⅱ温度区;磨削区域温度随着磨削深度增加而增加,随着主轴转速增加而增加;在镍基单晶高温合金不同晶面内微磨削时,(111)晶面温度最高,(110)晶面次之,(100)面微磨削温度最小.  相似文献   

16.
建立了微磨削过程的传热模型,针对石英玻璃材料进行有限元仿真分析,探讨了微磨削过程中磨削热的分布情况,分析磨削用量对磨削温度的影响规律.利用粒度500#的微磨具对石英玻璃进行单因素磨削温度测量实验.仿真与实验结果表明:磨削区表面最高温度随切削深度的增大而升高,随磨削速度的加快而升高,实测最高磨削区温度仅为94.2℃,并没有出现磨削烧伤现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号