首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
运用大应变挤出切削(LSEM)方法,采用前角为15°且切屑压缩比λ可调节(分别为1.5,1.0和0.5)的组合刀具制备了具有超细晶结构的AZ31镁合金带材,分析了带材的成型性和形貌,并对比分析带材的显微组织和测量显微硬度。结果表明,切屑压缩比对带材成型有直接的影响,LSEM能显著地细化AZ31镁合金的晶粒及改善其显微组织;晶粒细化后,AZ31镁合金的维氏硬度获得近33%的提升。  相似文献   

2.
在室温下对经过时效处理的2024铝合金实施了等效应变为0.5的等通道转角挤压(ECAP)变形,将形变强化、时效强化和晶界细化强化有机结合,制备出超细亚晶粒铝合金,其硬度、屈服强度、伸长率分别约达100 HV,130 MPa和31%.分析探讨了超细亚晶粒2024铝合金的强化机理.研究结果表明,屈服强度的实测数值和理论计算...  相似文献   

3.
在金属切削过程中,剧烈的大剪切变形可以产生具有超细晶结构的切屑,从而使其获得比本体材料更高的硬度和强度.文中比较了不同的金属和合金在各种刀具前角和切削速度下,切屑上产生的剪应变、切屑的微结构及硬度的变化规律.实验结果显示:随着刀具前角的减小,切屑的微结构显著细化,其硬度随之极大提高;切削速度的减小提高了切屑的硬度,但对其微结构的影响不甚明显;采用负前角刀具在较低的切削速度下能加工出具有超细晶结构和高硬度的切屑材料,而切削速度的提高将使大剪切变形引起的硬度增长变缓.  相似文献   

4.
金属切削过程中,剧烈的大剪切变形可以产生具有超细晶结构的切屑从而使其获得了比本体材料更高的硬度和强度。本文对比了不同的金属和合金在各种刀具前角和切削速度条件下,切屑上产生的剪应变、切屑的微结构及其硬度的变化规律。实验结果显示随着刀具前角的减小切屑的微结构得到显著细化,其硬度随之得到极大地提高;而切削速度的减小提高了切屑的硬度但其微结构的变化不甚明显;采用负前角刀具在较低的切削速度下能加工出具有超细晶结构和高硬度的切屑材料,而切削速度的提高将使大剪切变形引起的硬度增长减弱。  相似文献   

5.
表面层微观组织结构变化决定了零件的宏观性能,准确实现零件加工表层微观组织演变预测,进而提高零件加工表层力学性能(如硬度),是改善零件服役效能以及实现零件长服役寿命可控加工的一种有效方法。切削加工是钛合金TC4零件制造工艺中最基本的加工方法之一,切削过程中材料的剧烈塑性变形导致TC4加工表层微观组织变化复杂,本文针对TC4切削过程中的晶粒细化现象,对不同切削速度(100 ~ 500 m/min)下TC4组织结构多尺度分布特征、晶粒细化演变规律及其对表面材料硬度影响进行了研究。结果表明:TC4加工表层介观尺度(10-6 ~ 10-5 m)晶粒细化程度随切削速度提高呈现先增大后减小趋势,切削速度为300 m/min时,加工表面晶粒细化程度达69. 7%,切屑剪切带晶粒尺寸细化至2 ~ 6 μm;微观尺度(10-8 ~ 10-7 m)上表现为复杂位错组态和纳米孪晶,纳米孪晶类型主要为 ■压缩孪晶,且纳米孪晶在较高切削速度(> 200 m/min)下产生;基于修正的Z-H晶粒细化模型和纳米孪晶体积分数预...  相似文献   

6.
等径弯曲通道变形制备超细晶铝合金的组织性能   总被引:1,自引:0,他引:1  
用等径弯曲通道变形(ECAP)的方法制备出超细晶铝合金材料,并研究了在不同道次条件下其显微组织的演化过程.研究表明,随着强烈塑性变形的增加,显微组织中开始形成大量晶粒尺寸小于1μm的位错胞组织,当其晶界取向差增大时,亚晶粒变为越来越细的板条状组织.当经过8道次ECAP变形后,晶粒尺寸由变形前的约50μm细化为约0.2μm.该超细晶铝合金材料在150℃的退火条件下,其晶粒尺寸稳定在0.2~0.3μm的范围内.在温度为500℃、应变速率为10-3s-1的拉伸实验中,该超细晶铝合金材料的最大延伸率高达370%,呈现出良好的超塑性.  相似文献   

7.
以机械合金化+放电等离子烧结(MA-SPS)制备的超细晶Ti-8Mo-3Fe合金为研究对象,研究了合金在模拟体液(SBF)中的摩擦磨损性能,并与放电等离子烧结制备的微米尺寸晶粒的Ti-8Mo-3Fe合金、铸造纯Ti及Ti-6Al-4V(TC4)合金进行了对比.结果表明:采用MA-SPS工艺可制备出高致密度、组织均匀的超细晶Ti-8Mo-3Fe合金,合金由β相及少量α相组成,平均晶粒尺寸为1.5μm,显微硬度为448 HV;在相同摩擦磨损条件下,超细晶Ti-8Mo-3Fe合金的摩损程度明显低于微米晶粒Ti-8Mo-3Fe和铸态的纯Ti及TC4合金,具有最低的磨损体积和较稳定的摩擦系数.超细晶Ti-8Mo-3Fe合金的磨损机制为磨粒磨损,而微米晶粒Ti-8Mo-3Fe和铸态纯Ti及TC4合金的磨损机制为磨粒磨损和黏着磨损并存的混合磨损.  相似文献   

8.
原位TiC颗粒细化喷射沉积7075铝合金组织的机理   总被引:6,自引:1,他引:6  
采用原位反应喷射沉积法制备TiCP/7075(TiCP体积分数为2.91%)铝合金,观察其微观组织. 应用Image Tool软件及平均截线法统计平均晶粒尺寸,并与喷射沉积7075铝合金进行对比. 发现前者的晶粒尺寸比后者减小50%左右,表明原位TiC颗粒对喷射沉积7075铝合金组织具有显著的细化作用. 从形核的属性、速度以及过程的晶体学分析对其细化机理进行了解释.  相似文献   

9.
本文对低温回火态Gcr15轴承钢的激光相变硬化处理进行了研究.试验了激光处理的工艺参数对硬化过程的显微组织、淬硬层的硬度变化、残余应力分布、残留奥氏体形貌与数量以及耐磨性能等的影响.结果表明:经激光相变硬化处理后,Gcr15钢的表面硬度可达HV1000以上,硬化层的显微组织为缺陷密度高的隐针马氏体,晶粒度为ASTM 14级,残留奥氏体约达20%,呈膜态分布于马氏体条片之间及碳化物周围,超细的碳化物非常弥散地分布着,表面层保持较大的压应力而耐磨性能明显提高.据此,可以认为激光相变硬化的强韧化机制是:晶粒细化强化、亚结构强化,弥散析出强化以及残留奥氏体强化等的综合贡献.  相似文献   

10.
实现传统钢铁材料性能的全面升级符合社会可持续发展战略,组织超细化是同时提高钢铁材料强度和韧性的最佳强化机制.大量研究成果表明,通过不同的晶粒细化工艺可使钢铁材料组织细化到微米级、亚微米级和纳米.级,使得传统钢铁材料的综合力学性能得到大幅度提高.但目前困扰超细晶粒钢的焊接技术尚未得到彻底解决.现阶段易于工业化晶粒超细化处理工艺所制备的超细晶粒钢,其焊接问题主要表现为焊接热影响区(HAZ)存在不同程度的脆化和局部软化现象,严重影响了焊接接头与母材性能的匹配.基于氧化物夹杂诱导形核的晶内针状铁素体组织强度高、韧性好,具有很强的自身细化能力,通过氧化物冶金技术获得具有大量有益微夹杂物的超细晶粒钢有望解决其焊接性问题.深入研究钢材基体中超细夹杂物形成与作用机理和焊接HAZ晶内针状铁素体的形成规律及影响因素,制备焊接性能良好的超细晶粒钢是新一代超级钢材料研究的重要发展方向.  相似文献   

11.
通过一种新型表面自纳米化方法——剧烈塑性滚柱滚压(SPRB),在纯铁表面成功制备出最小晶粒尺寸约300 nm的梯度超细晶结构.利用电化学方法,结合透射电镜、X射线衍射、扫描电镜等对这种材料的表面微观组织结构及腐蚀性能进行研究,结果表明:与粗晶铁相比,超细晶纯铁最表层硬度提高1.6倍以上,表层形成较强面织构,表层微观应变为(0.313±0.017)%;超细晶纯铁在3.5%Na Cl溶液中的自腐蚀电位相对于粗晶铁的正向移动24 m V,腐蚀电流密度从粗晶铁的2.371×10-5A/cm2降低到超细晶的7.547×10-8A/cm2;超细晶纯铁在6%Fe Cl3溶液中的点蚀腐蚀速度约为粗晶铁的一半;超细晶纯铁的耐腐蚀性能与粗晶铁相比有显著的提高,表层晶粒的细化和滚压形成的强织构是超细晶纯铁耐腐蚀性能提高的原因.  相似文献   

12.
面向高性能结构材料的超细晶粒钢研究现状及发展方向   总被引:1,自引:0,他引:1  
实现传统钢铁材料性能的全面升级符合社会可持续发展战略,组织超细化是同时提高钢铁材料强度和韧性的最佳强化机制。大量研究成果表明,通过不同的晶粒细化工艺可使钢铁材料组织细化到微米级、亚微米级和纳米级,使得传统钢铁材料的综合力学性能得到大幅度提高。但目前困扰超细晶粒钢的焊接技术尚未得到彻底解决。现阶段易于工业化晶粒超细化处理工艺所制备的超细晶粒钢,其焊接问题主要表现为焊接热影响区(HAZ)存在不同程度的脆化和局部软化现象,严重影响了焊接接头与母材性能的匹配。基于氧化物夹杂诱导形核的晶内针状铁素体组织强度高、韧性好,具有很强的自身细化能力,通过氧化物冶金技术获得具有大量有益微夹杂物的超细晶粒钢有望解决其焊接性问题。深入研究钢材基体中超细夹杂物形成与作用机理和焊接HAZ晶内针状铁素体的形成规律及影响因素,制备焊接性能良好的超细晶粒钢是新一代超级钢材料研究的重要发展方向。  相似文献   

13.
超细晶和纳米晶材料通常比其粗晶材料具有更高的硬度、强度和更好的耐磨性.切削是一种大批量、低成本制造纳米结构金属和合金的新颖方法.切削是一种典型的大应变加工工艺,它可以在切屑成型的一个单一的变形过程中施加更大的应变,而且也适合高强度的金属和合金,克服了剧烈塑性变形方法的局限性.详细介绍了切削加工的大应变变形、切屑的微观结构和性能,同时提出了一些改进措施和发展前景.  相似文献   

14.
等通道转角挤压技术是目前制备超细晶粒金属块材的最新研究领域之一.本实验采用了等通道转角挤压技术对3种商业铝合金以A、B、C等3种方式挤压,结果表明:3种挤压方式后的硬度与挤压道次的关系基本一致,即3~4次挤压后硬度趋于饱和;应用的负荷大小对ECAP期间剥落的可能性也被测量,以便改善挤压过程.X-射线衍射分析法显示挤压后这些铝合金出现亚微米级晶粒尺寸.本实验中,经不同方式等通道转角挤压(ECAP)铝合金组织结构变化有较大不同,晶粒得到明显细化.  相似文献   

15.
为了细化镁合金晶粒,对AZ91粉末采用高压低温烧结方法制备细晶AZ91镁合金,利用金相显微镜和X射线衍射仪(XRD)分析了烧结体的显微组织与成分,研究了烧结时间与致密度和硬度的关系,揭示了高压低温烧结过程中烧结体内组织的细化与生长机理。结果表明,在1 200 MPa、300℃条件下烧结48h后,晶粒平均尺寸约10μm,致密度达到99.5%;与铸态时相比,高压低温烧结法制备的镁合金,其显微硬度(HV)值从81.6提高到103。本研究对回收利用工业镁合金废屑、拓展高性能镁合金研究提供一种新途径。  相似文献   

16.
通过大变形异步-同步轧制及随后600 ℃和700 ℃退火处理,成功制备了超细晶高锰TWIP钢,并研究了退火处理对大变形TWIP钢的组织和性能的影响.研究结果表明:经96%异步-同步大变形轧制后,材料组织显著细化,抗拉强度从621 MPa大幅提升至2 050 MPa; 经过600 ℃退火后,大变形轧制TWIP钢的组织基本完成了再结晶,材料的平均晶粒尺寸约为500 nm,抗拉强度1 079 MPa,延伸率达到了29%; 而经过700 ℃退火后,大变形TWIP钢的组织发生了完全再结晶,平均晶粒尺寸约为600 nm,抗拉强度达到了1 101 MPa,延伸率达到了54%.退火后的组织中存在大量的层错、位错胞等亚结构.相对于大变形轧制态和600 ℃退火态,700 ℃退火态的超细晶TWIP钢的优异的综合力学性能,主要源于孪晶诱发塑性变形机制及合金较低的层错能.  相似文献   

17.
文章比较不同细化方法细化5182铝合金的晶粒细化能力,同时用MATLAB统计工具箱采用统计分析方法对均匀化处理前后的5182铝合金的硬度进行分析.结果证明,Al-5Ti-1B细化合金的晶粒最小,含钛铝锭(GRAI) 0.25%Zr细化合金的晶粒略大于Al-5Ti-IB细化合金;GRAI中分别加入0.16%La、0.20%RE(富铈混合稀土)后,合金晶粒变化不大;GRAI制造的5182铝合金比Al-5Ti-IB、Al-10Ti中间合金细化的合金硬度高;加0.25%Zr使GRAI制造合金硬度增加;对于均匀化前的合金,加0.16%La使GRAI制造合金硬度减小,而加0.20%RE硬度变化较小;对于均匀化处理后的合金,加0.16%La使GRAI制造合金硬度变化较小,而加0.20%RE使GRAI制造合金硬度增加.均匀化处理,使合金的硬度有所下降,GRAI 0.25%Zr细化合金的硬度下降幅度最大.  相似文献   

18.
为研究等温处理对铝热法制备的块体纳米晶Fe3Al平均晶粒尺寸和硬度影响,对制得的材料进行800~1 200℃的等温处理.通过XRD和TEM分析材料的晶体结构和平均晶粒尺寸,用布洛维光学硬度计测定材料的维氏硬度.结果表明:等温处理前后纳米晶Fe3Al的晶体结构未发生变化,均为无序bcc结构;材料的平均晶粒尺寸约为16 nm,在等温处理之后有所长大,1 200℃等温处理8 h后,平均晶粒尺寸达到最大值20 nm;纳米晶Fe3Al的维氏硬度约为481 HV,在等温处理之后略有减小,经1 200℃等温处理8 h,维氏硬度最小值为457 HV.  相似文献   

19.
超细晶和纳米晶材料通常比其粗晶材料具有更高的硬度、强度和更好的耐磨性。切削是一种大批量、低成本制造纳米结构金属和合金的新颖方法。切削是一种典型的大应变加工工艺,它可以在切屑成型的一个单一的变形过程中施加更大的应变,而且也适合高强度的金属和合金,克服了剧烈塑性变形方法的局限性。本文详细介绍了切削加工的大应变变形、切屑的微观结构和性能,同时提出了一些改进措施和发展前景。  相似文献   

20.
采用Gleeble-3500试验机对ZGMn13Cr2高锰钢进行0.1s-1应变速率下的室温压缩实验,应变量分别为5%,30%和50%.利用金相显微镜、维氏显微硬度机、XRD和TEM等方法,研究了压缩变形量对ZGMn13Cr2显微组织衍变及加工硬化机制的影响.结果表明:高锰钢压缩变形后晶粒内出现大量变形带,变形带相互交叉、缠结、割截.压缩变形量为5%时,高密度位错相互缠结呈位错胞或者位错墙,压缩变形量为30%时,基体内出现形变孪晶,随着变形量的进一步增大,孪晶的密度和体积分数增大,水韧态高锰钢在压缩变形量为50%的条件下,其显微硬度与初始态相比提高了125%,达到HV560.8.XRD结果显示,压缩变形后基体组织为奥氏体和少量的碳化物,未发现相变诱发马氏体组织.随着变形量的增大,高锰钢加工硬化机理由位错强化机制向形变孪晶强化为主、位错+少量层错强化机制为辅的机制转变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号