首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraction of vanadium from high calcium vanadium slag was attempted by direct roasting and soda leaching. The oxidation process of the vanadium slag at different temperatures was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effects of roasting temperature, roasting time, Na2CO3 concentration, leaching temperature, leaching time, and liquid to solid ratio on the extraction of vanadium were studied. The results showed that olivine phases and spinel phases in the vanadium slag were completely decomposed at 500 and 800℃, respectively. Vanadium-rich phases were formed at above 850℃. The leaching rate of vanadium reached above 90% under the optimum conditions:roasting temperature of 850℃, roasting time of 60 min, Na2CO3 concentration of 160 g/L, leaching temperature of 95℃, leaching time of 150 min, and liquid to solid ratio of 10:1 mL/g. The main impurities were Si and P in the leach liquor.  相似文献   

2.
An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures:low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200℃, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.  相似文献   

3.
采用氧化焙烧-酸浸法从高碳石煤中提钒试验研究   总被引:1,自引:0,他引:1  
针对广西某难浸高碳石煤,比较相同焙烧和酸浸条件下静态焙烧矿和流态化焙烧矿钒的浸出率,优化流态化焙烧矿的酸浸条件。研究结果表明:流态化焙烧矿酸浸钒的浸出率比静态焙烧矿酸浸钒的浸出率平均高24%,所以,在相同焙烧温度、时间下流态化焙烧较静态焙烧更利于钒的浸出;在液固质量比为0.8:1.0,二氧化锰添加量为3%和氢氟酸添加量为2%的条件下,得最佳酸浸条件,即酸矿质量比为0.4:1.0,浸出温度为150℃,浸出时间为6 h,在此最佳酸浸条件下,钒浸出率可达88.26%。  相似文献   

4.
本文介绍用氧化钙化焙烧法从钒云母矿中提取钒的试验研究,对焙烧、浸出、净化、沉钒过程中各影响因素进行了探讨。研究结果表明,用石灰和钒云母矿混合焙烧生成钒酸钙,然后用碳铵溶液浸出钒,提取率高达78%,工艺简单、可靠,并且对环境污染小,投资少,它不失为一种可取的提钒新方法。  相似文献   

5.
A new process of extracting vanadium from the stone coal vanadium ore in Fangshankou, Dunhuang area of Gansu Province, China was introduced. Various leaching experiments were carried out, and the results show that the vanadium ore in Fangshankou is difficult to process due to its high consumption of acid and the high leaching rate of impurities. However, the leaching rate can be up to 80% and the content of V2O5 in the residue can be between 0.22%–0.25% in the process of ore fine grinding→oxidation roasting→mixing and ripening→aqueous leaching→P2O4 solvent extraction→sulfuric acid stripping→oxidation and precipitation→decomposition by heat. Also, the quality of flaky V2O5 produced by this process can meet the requirements of GB3283–87. The total leaching rate of vanadium is 70%. Also, three types of wastes are easy to treat. The vanadium extraction process is better in relation to the aspect of environmental protection than the sodium method.  相似文献   

6.
A sodium modification-direct reduction coupled process was proposed for the simultaneous extraction of V and Fe from vanadium-bearing titanomagnetite. The sodium oxidation of vanadium oxides to water-soluble sodium vanadate and the transformation of iron oxides to metallic iron were accomplished in a single-step high-temperature process. The increase in roasting temperature favors the reduction of iron oxides but disfavors the oxidation of vanadium oxides. The recoveries of vanadium, iron, and titanium reached 84.52%, 89.37%, and 95.59%, respectively. Moreover, the acid decomposition efficiency of titanium slag reached 96.45%. Compared with traditional processes, the novel process provides several advantages, including a shorter flow, a lower energy consumption, and a higher utilization efficiency of vanadium-bearing titanomagnetite resources.  相似文献   

7.
Based on the fluidized roasting reduction technology of low-grade pyrolusite coupling with pretreatment of stone coal, the manganese reduction efficiency was investigated and technical conditions were optimized. It is found that the optimum manganese reduction efficiency can be up to 98.97% under the conditions that the mass ratio of stone coal to pyrolusite is 3:1, the roasting temperature of stone coal is 1000℃, the roasting temperature of pyrolusite is 800℃, and the roasting time is 2 h. Other low-grade pyrolusite ores in China from Guangxi, Hunan, and Guizhou Provinces were tested and all these minerals responded well, giving ~99% manganese reduction efficiency. Meanwhile, the reduction kinetic model has been established. It is confirmed that the reduction process is controlled by the interface chemical reaction. The apparent activation energy is 36.397 kJ/mol.  相似文献   

8.
针对传统钒渣钠化焙烧-水浸提钒工艺的不足,确定对钒渣钙化焙烧-酸浸提钒进行研究。在理论分析的基础上,本研究以高钒渣为原料,研究了钙化焙烧-酸浸提钒过程中3种钙化剂(CaSO4、CaCO3、CaO)的焙烧机理以及对提钒效果的影响。研究结果表明:钒浸出率随焙烧温度的升高先增大后减小,且在1 450K时达到最大值;钙化剂配比为100%CaSO4时提钒率最大;在目前实验室研究条件下,钒的浸出率最大可达93.53%。  相似文献   

9.
The water leaching process of vanadium, sodium, and silicon from molten vanadium-titanium-bearing (V-Ti-bearing) slag obtained from low-grade vanadium-bearing titanomagnetite was investigated systematically. The results show that calcium titanate, sodium aluminosilicate, sodium oxide, silicon dioxide and sodium vanadate are the major components of the molten V-Ti-bearing slag. The experimental results indicate that the liquid-solid (L/S) mass ratio significantly affects the leaching process because of the respective solubilities and diffusion rates of the components. A total of 83.8% of vanadium, 72.8% of sodium, and 16.1% of silicon can be leached out via a triple counter-current leaching process under the optimal conditions of a particle size below 0.074 mm, a temperature of 90°C, a leaching time of 20 min, an L/S mass ratio of 4:1, and a stirring speed of 300 r/min. The kinetics of vanadium leaching is well described by an internal diffusion-controlled model and the apparent activation energy is 11.1 kJ/mol. The leaching mechanism of vanadium was also analyzed.  相似文献   

10.
以湖北襄樊的碳质石煤为原料,通过热力学理论分析和热分析实验对石煤与生物质混合共焙烧过程进行研究。结果发现:混合焙烧过程中,各种物质反应的先后顺序为有机质的氧化反应→黄铁矿的氧化反应→钒的氧化反应;生物质的加入为打破石煤中的云母晶格提供了大量的热量,使石煤中的还原性物质反应温度降低且反应时间缩短,对石煤的脱碳与焙烧起相应的促进作用。  相似文献   

11.
To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy transformation, and the form of leach residues were made by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The result shows that the vanadium slag is composed of major phases of fayalite, titanomagnetite, and spinel. During the high pressure oxidative acid leaching process, the fayalite and spinel phases are gradually decomposed by sulfuric acid, causing the release of vanadium and iron in the solution. Meanwhile, unreacted silicon and titanium are enriched in the leach residues. With the initial concentration of sulfuric acid at 250 g·L-1, a leaching temperature of 140℃, a leaching time of 50 min, a liquid-solid ratio of 10:1 mL·g-1, and oxygen pressure at 0.2 MPa, the leaching rate of vanadium reaches 97.69%.  相似文献   

12.
酸浸法提钒新工艺的研究   总被引:13,自引:0,他引:13  
研究了用稀硫酸直接浸出—萃取—反萃—氨水沉钒—煅烧的提钒工艺。结果表明,采用稀硫酸直接浸出,原矿渣中总钒的一次浸取率可达95%以上;用萃取-反萃方式净化和浓缩浸出液,同时使用萃取促进剂处理酸浸液,使萃取效率比传统方法有明显提高,萃取级数大大减少;沉钒步骤摒弃了传统的铵盐沉钒工艺,使用氨水直接沉钒,提高了产品的纯度。钒的总回收率达86%以上,比传统提钒工艺效率提高了20%以上,同时由于避免了焙烧从而解决了传统提钒过程中因焙烧等产生的HCl、Cl2等污染问题。  相似文献   

13.
Calcification roasting–acid leaching of high-chromium vanadium slag (HCVS) was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium. The effects of the purity of CaO, molar ratio between CaO and V2O5 (n(CaO)/n(V2O5)), roasting temperature, holding time, and the heating rate used in the oxidation–calcification processes were investigated. The roasting process and mechanism were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetry–differential scanning calorimetry (TG–DSC). The results show that most of vanadium reacted with CaO to generate calcium vanadates and transferred into the leaching liquid, whereas almost all of the chromium remained in the leaching residue in the form of (Fe0.6Cr0.4)2O3. Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with CaO. Moreover, CaO was more likely to combine with vanadium, as further confirmed by thermodynamic analysis. When the HCVS with CaO added in an n(CaO)/n(V2O5) ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10℃/min from room temperature to 950℃ and maintained at this temperature for 60 min, the leaching ratios of vanadium and chromium reached 91.14% and 0.49%, respectively; thus, efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium. Furthermore, the oxidation and calcification reactions of the spinel phases occurred at 592 and 630℃ for n(CaO)/n(V2O5) ratios of 0.5 and 5, respectively.  相似文献   

14.
A new technique of swelling oxidizing roasting and alkaline leaching was proposed for deselenization and detellurization of precious-metal ore concentrates. Alkali-metal and alkaline-earth-metal chlorides and carbonates were preliminarily selected as swelling agents. The roasting removal rate and alkaline leaching rate of selenium and tellurium were investigated, and NaCl was selected as an appropriate swelling agent. Furthermore, the effects of various factors on the selenium gasification rate and leaching rate of selenium and tellurium were investigated. The results show that the selenium gasification rate reaches 88.41% after swelling oxidizing roasting for 2 h at 510℃ using an NaCl dosage coefficient of 100 and a sulfuric acid dosage coefficient of 1.3; the amorphous elemental tellurium is completely transformed into TeO2. The roasted product is subjected to alkaline leaching using a 100 g/L NaOH solution, which results in a selenium leaching rate of 10.51%, a total selenium removal rate of 98.92%, and a tellurium leaching rate of 97.64%. In the alkaline leaching residue, the contents of selenium, tellurium, gold, platinum, and palladium are 0.7825%, 5.492%, 8.333%, 0.2587%, and 1.113%, respectively; the precious metals are enriched approximately sixfold.  相似文献   

15.
采用钙化焙烧方式处理转炉钒渣以提高钒的浸出率,考察了焙烧参数(渣样粒度,升温速率,焙烧保温温度及保温时间,配钙量)对钒浸出率的影响,根据钒渣氧化的TG-DSC曲线对钒渣氧化变温动力学进行了分析.结果表明:降低升温速率可提高钒氧化率,保温温度高于600℃时钒浸出率迅速增加.在钒渣粒径48~75μm,外配钙m(CaO)/m(V2O5)为042,升温速率2℃·min-1,保温温度850℃,保温时间150min的条件下,钒浸出率达9331%.钒尖晶石氧化过程受三级化学反应控制,升温速率为5和10℃·min-1的表观活化能分别为26765,25603kJ·mol-1.  相似文献   

16.
在石煤提钒工艺中,为了充分利用石煤中的有价元素硅,采用碱浸提钒工艺提取石煤中的钒和硅.经过预焙烧后,可以有效地破坏石煤结构,提高钒硅浸出率.在焙烧温度850℃、焙烧时间2h、浸出温度95℃、浸出时间4h、固液比(g∶mL)1∶1.4、矿碱质量比1.2∶1的条件下,钒的浸出率为86.6%,硅的浸出率为61.4%.  相似文献   

17.
酸浸对钙化焙烧提钒工艺钒浸出率的影响   总被引:1,自引:0,他引:1  
采用稀硫酸浸出法提取钙化焙烧后钒渣中的钒,考察了浸出参数:物料粒度、体系pH值、浸出温度和时间、液固比(L/S)、搅拌速度对钒及杂质元素浸出率的影响.结果表明:物料粒度小于75μm时对提高钒浸出率影响较小;液固比从2∶1增加到7∶1,搅拌速度由100增加到500r/min时,钒浸出率增长幅度均低于3%;钒浸出率在浸出前15min内迅速升高,之后增长变缓;浸出体系pH值对钒及杂质浸出率影响显著,pH值为2~3时钒浸出率达90%,杂质元素Ca,Mn,Mg,Al,Si,P浸出率为10%~30%;在较佳浸出条件下:粒度96~75μm,pH值为25,温度55℃,时间30min,L/S为3,搅拌速度500r/min,钒浸出率超过91%.  相似文献   

18.
The single phase LiNiVO4 has been successfully synthesized by adopting a new mild liquid route with oxalic acid as both complexant and precipitant, and this method is named the CPG method. The products were obtained by sintering the dry gel precursor which was prepared by the CPG method at 200—850℃ for 2—10 h in air. The products were tested by XRD, XPS, ESR and TGA-DTA, and the results indicate that the single phase LiNiVO4 could be obtained at 450℃ for 2—3 h in air and LiNiVO4 was still steady at 850℃ for 10 h. The valence analyses show that in LiNiVO4 the valence of lithium is +1, both nickel and vanadium have the mixed valence, namely +2, +3 for nickel and +4, +5 for vanadium respectively. The LiNiVO4 can be expressed as LiNi3+xNi2+1-xV4+xV5+1-xO4 (0≤x<1). The pyrolysis mechanism of the dry gel is also discussed.  相似文献   

19.
In pyrometallurgical process, Al-and Si-bearing minerals in iron and aluminum ores are easily transformed into sodium aluminosilicates in the presence of Na2O constituents, which alters the leaching behaviors of Al2O3 and SiO2. It was confirmed that sodium aluminosilicates with different phase compositions synthesized at various roasting conditions were effectively digested in the alkaline digestion process. Under the optimum conditions at temperature of 100-120℃, liquid-to-solid ratio (L/S) of 10:2 mL/g, caustic ratio of 4, and Na2O concentration of 240 g/L, the actual and relative digestion ratio of Al2O3 from the synthesized sodium aluminosilicates reached maximums of about 65% and 95%, respectively, while SiO2 was barely leached out. To validate the superior digestion property of sodium aluminosilicate generated via an actual process, the Bayer digestion of an Al2O3-rich material derived from reductive roasting of bauxite and comprising Na1.75Al1.75Si0.25O4 was conducted; the relative digestion ratio of Al2O3 attained 90% at 200℃.  相似文献   

20.
The effect and mechanism of microwave irradiation on vanadium leaching were studied via a comparison between microwave heating and conventional heating. The results show a synergistic effect of microwave irradiation and calcium fluoride (CaF2) on the vanadium leaching efficiency. It is confirmed that the vanadium leaching process can be improved by microwave irradiation when CaF2 is present. The leaching rate of vanadium under microwave irradiation is increased by 8%-15% when 5wt% CaF2 is added; by contrast, in the absence of CaF2, the leaching rate is almost unaffected compared to that by conventional heating. Morphological analysis reveals that the particles are gradually eroded by acid under microwave irradiation, whereas some of the fine particles in samples subjected to conventional heating are tightly covered by a flocculent silicate product. Moreover, a large amount of Al and V and a small amount of Si are dissolved from samples under microwave heating, as revealed by the elemental analysis of leachates. Fourier transform infrared spectroscopic analysis also indicates a higher mass transfer coefficient in the diffusion layer of the raw material by microwave irradiation. When CaF2 is present, the reaction energy barrier is lowered and the leaching process is controlled by the tightly covered product layer, resulting in a prominent effect of microwave irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号