首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为增强镁合金的成型性能,采用热压缩、金相和X线衍射等方法,在温度为350-400℃,应变速率为10-2/s条件下,分析孪生对镁合金热压缩变形过程中流变应力及变形末期流变硬化行为的影响.研究结果表明:在变形过程中,AZ41和ZK60 2种合金的流变应力都随着热压缩温度升高而下降;由于初始织构不同,AZA1镁合金的变形模式主要是孪生,AZ41对应的流变应力峰值高于ZK60合金的流变应力峰值;在变形中期,AZA1合金中仍存在大量的孪晶,使其稳态流变应力始终高于ZK60合金稳态流变应力;在变形末期,孪生导致AZA1镁合金流变硬化行为;ZK60镁合金由于再结晶的软化作用,依然表现为稳态流变.  相似文献   

2.
采用Thermorestor-W热模拟试验机,对Cr15Mn9Cu2Ni1N不锈钢进行热压缩试验,研究其在变形温度950~1 200℃,应变速率0.01~2.5s-1条件下的动态再结晶行为.当变形温度高于1 000℃后,Cr15Mn9Cu2Ni1N不锈钢的变形以动态再结晶为主,且随温度升高,峰值应力对应的应变减小.利用应变硬化率-应力曲线确定的材料动态再结晶临界应力σc、峰值应力σp、饱和应力σss(e)和稳态应力σs的数值,回归得到临界动态再结晶应变εc与Zener-Hollomon参数的关系,并确定临界应力与峰值应力的关系.通过建立Cr15Mn9Cu2Ni1N不锈钢的热变形动态再结晶Avrami模型,分析应变速率和变形温度对Avrami曲线的影响,表明应变速率比温度对Cr15Mn9Cu2Ni1N不锈钢的动态再结晶Avrami曲线的影响更加显著.  相似文献   

3.
SCM435钢热变形动态再结晶动力学模型参数的确定   总被引:1,自引:0,他引:1  
通过分析冷镦钢SCM435在温度为950~1150℃、应变速率为0.1~1s-1范围内发生动态再结晶的热/力模拟试验数据,利用其应变硬化速率θ与流变应力σ的θ-σ曲线,准确确定了其发生动态再结晶的临界应变εc、峰值应变εp、临界应力σc和峰值应力σp,用应力-应变(σ-ε)曲线方法计算SCM435钢的动态再结晶Avrami动力学曲线和时间指数n.结果表明:SCM435钢发生动态再结晶的临界应变与峰值应变的平均比值εc/εp=0.73,动态再结晶Avrami时间指数平均值n=1,91;在温度950~1150℃,应变速率0.1~1 s-1范围内,应变速率是SCM435钢的动态再结晶动力学敏感因素,温度对其影响不大;动态再结晶率50%的时间t50与应变速率成反比.  相似文献   

4.
ZK60镁合金高温流变本构模型   总被引:2,自引:2,他引:0  
在变形温度为523~673 K、应变速率为0.001~1 s-1的条件下,采用Gleeble-1500热模拟试验机对ZK60镁合金的热压缩变形行为进行研究。通过引入应变对ZK60镁合金流变应力本构方程进行改进。研究结果表明:ZK60镁合金流变应力随着变形温度升高和应变速率降低而减小。其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段,但在温度较高和应变速率较低时,过渡阶段不明显;采用改进后的本构方程预测的流变应力曲线与实验所得曲线较吻合。  相似文献   

5.
AZ61镁合金热压缩流变应力的实验   总被引:1,自引:1,他引:0  
采用Gleeble-1500型热模拟机,对AZ61镁合金进行高温压缩实验,分析该合金在不同变形温度与应变速率条件下的压缩流变应力.研究AZ61镁合金在热变形时,流变应力与变形温度、应变速率之间的关系,并建立相应的流变应力模型.结果表明,AZ61镁合金在高温压缩变形时,当变形温度一定时,流变应力随应变速率的增大而增大;而当应变速率一定时,流变应力随变形温度的升高而降低.AZ61镁合金的热变形过程均表现出较明显的动态再结晶特征,其流变应力的变化规律主要受加工硬化和再结晶软化两者机制的共同作用.在热变形下,AZ61镁合金峰值流变应力可以用双曲正弦模型来进行较好的描述.  相似文献   

6.
为优化控氮304不锈钢热成型的工艺,深入分析了其在热变形过程中的动态再结晶行为并建立了完整的数学模型。通过热压缩实验获得了16组不同温度、不同应变速率下的流动应力曲线,采用二次求导法确定了发生动态再结晶的临界应力σc、饱和应力σs、稳态应力σss等特征值,结合相应的显微组织分析表明:随着变形温度的升高、应变速率的减小,动态再结晶易发生。基于Estrin-Mecking位错密度演化方程及Avrami动力学方程,建立了该材料的热变形流动应力模型及动态再结晶动力学模型,模型预测的流动应力曲线与实验结果吻合较好,动力学模型预测的动态再结晶分数曲线也与实验观察到的晶粒组织变化趋势一致,证明了该数学模型的有效性。  相似文献   

7.
采用Gleeble-1500热模拟试验机上对B72LX、B82LX钢进行变形温度为850℃~1050℃应变速率为0.1~10 1/s的压缩变形试验,研究了这两个钢种的再结晶规律。并通过回归分析得出峰值应力σm、应变εp、动态再结晶临界应变cε与温度补偿因子Z的关系式,从而获得动态再结晶产生的条件及动态再结晶激活能。  相似文献   

8.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s-1和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

9.
在Gleeble3500热模拟实验机上,对铸态AZ31镁合金进行热压缩实验,获得了变形温度为250~400℃、应变速率为0.005~0.5 s~(-1)条件下镁合金的流变应力曲线,分析了主要工艺参数对AZ31镁合金流变应力的影响规律。结果表明,随着应变的进行,在硬化软化机制共同作用下,材料的流变应力达到峰值应力后缓慢下降,最后基本保持不变,镁合金发生了动态再结晶,;随着温度的升高,应变速率降低,其峰值应力显著下降,可见镁合金属于温度敏感型材料。在此基础上,基于双曲正弦流动应力本构模型,同时考虑塑性变形热和摩擦热的影响,建立了形式简单且具有较高精度的流动应力预测模型。预测值与实验值的相关系数为0.932,该模型能较好地描述铸态AZ31镁合金热变形过程中的流变应力行为。  相似文献   

10.
在Gleeble-1500热模拟试验机上, 通过高温压缩实验对316L不锈钢的动态再结晶行为进行了系统研究. 结果表明:316L不锈钢热变形加工硬化倾向性较大, 在真应力应变曲线上没有出现明显的应力峰值σ_p;316L不锈钢在热变形过程中发生了动态再结晶, 但只是在局部区域观察到了动态再结晶晶粒. 对动态再结晶的实验数据进行拟合, 得到316L不锈钢的热激活能和热变形方程, 并给出了发生动态再结晶的临界应变和临界应力以及Zener-Hollomon参数和稳态应力的关系.  相似文献   

11.
通过热压缩变形实验, 利用光学显微镜观察, 对ZK31 0.3Yb镁合金变形过程的流变应力和组织演变进行研究. 研究结果表明: 663 K/0.1 s-1是最佳的变形条件, 在此条件下, 合金的流变应力低, 动态再结晶充分激发, 合金的塑性好;当变形温度降至623 K和573 K时, 动态再结晶不能充分激发, 合金变形的流变应力明显提高, 尤其是573 K变形时流变应力达到185 Mpa;而变形温度提高到723 K时, 晶界处形成楔形裂纹, 合金的塑性差;在663 K时变形, 尽管应变速率降低至0.001 s-1, 合金的动态再结晶充分激发, 流变应力下降, 但变形的进程被减缓;当变速率提高到1.000 s-1时, 晶粒间的协调变形不能发挥作用, 合金的塑性最差.  相似文献   

12.
在Gleeble-1500热模拟试验机上对Al-0.80Mg-0.63Si-0.61Cu合金进行等温热压缩试验,研究其在高温压缩变形中的流变应力行为.研究结果表明:流变应力随应变速率的增大而增大,随变形温度的升高而降低,在高应变速率和较低温度条件下,应力出现锯齿波动,呈不连续再结晶特征;该铝合金热压缩变形的流变应力行为可用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能为176.54 kJ/mol.  相似文献   

13.
采用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Ag合金进行热压缩试验,研究了Cu-Cr-Zr-Ag合金在不同应变速率和变形温度的流变应力行为、微观组织演变和动态再结晶机制,利用光学显微镜(OM)研究了Cu-Cr-Zr-Ag合金的压缩速率、形变温度对合金微观织构的影响.结果表明:在压缩速率为0.001~10 s-1的区间内,Cu-Cr-Zr-Ag合金存在近稳态流变特征,即流变应力随温升及压缩速率的降低而变小.形变温度越高,越能促使再结晶形核,压缩速率越低,越利于动态再结晶充分发生.  相似文献   

14.
以TC4钛合金板带为研究对象,重点对其高温下的强度和热导率以及表面氧化皮等进行试验研究和分析.TC4钛合金的屈服强度和抗拉强度以及屈强比均随温度的升高而降低.所测合金的比热容范围为0.61~1.14 J/(kg·K),热辐射系数为0.58.TC4合金表面氧化缺陷层主要由外侧含氧量较高的氧化皮和内侧的富氧层组成.随加热温度的升高和保温时间的延长,富氧层会向合金基体延伸使其氧化层厚度增加.在较高的应变速率和较低的变形温度下,TC4合金的变形抗力增加明显.应力-应变曲线随应变速率的降低由加工硬化型向动态再结晶型转变,变形温度越高其发生动态再结晶的临界变形量越小.  相似文献   

15.
在Gleeble-1500热模拟试验机和UTM5305实验机上以不同的变形条件对AZ31镁合金进行高温热变形试验,研究该材料在高温热变形过程中的真应力应变。研究结果证明:在变形过程中的AZ31镁合金的真应力随应变速率增大、变形温度降低而升高。在压缩变形过程中的真应力峰值、真应变和动态再结晶与拉伸变形过程相比有明显差异;该镁合金热变形过程中的真应力为用包含Arrhenius项的Zener-Hollomon参数来描述,其压缩拉伸变形激活能分别为132.38 kJ/mol和Q=255.26 kJ/mol.  相似文献   

16.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

17.
通过热压缩实验得出温度在300~450℃,应变率为0.01~1 s-1时的应力-应变曲线,建立了AZ31镁合金的动态再结晶模型。该模型用于AZ31镁合金无缝管挤压过程中动态再结晶过程的数值模拟,并通过金相观察得以实验验证。结果表明,在挤压速度确定的情况下,挤压温度对动态再结晶分数的影响最为明显。随着挤压温度的升高,动态再结晶体积分数明显增大。预测的动态再结晶体积分数与实验结果吻合。  相似文献   

18.
通过高温单道次压缩实验,研究800H合金在变形温度850~1 050℃和应变速率0.01~10 s-1条件下的热变形行为和微观组织变化.根据单道次压缩实验数据,绘制了不同变形条件下的800H合金真应力-真应变曲线,通过非线性回归建立了流变应力数学模型;通过线性回归建立了不同温度区间内热变形本构方程.分析了热变形条件对合金微观组织的影响,结果表明:动态再结晶更有可能发生在低应变速率和高变形温度的变形条件下;当变形温度低于950℃时,沿晶界析出的Cr23C6粒子对动态再结晶的发生有一定的抑制作用.  相似文献   

19.
通过THERMOMASTER-Z型热/力模拟试验机对CSP生产线上冷轧冲压基板(SPHD)进行了热变形实验,建立了该钢种的临界应变模型以及流动应力-应变模型;分析了试验过程中工艺参数对临界应变、流动应力的影响。结果表明,变形温度、变形速率是影响临界应变的主要因素,当热变形达到临界应变时,将发生动态再结晶,同时造成变形抗力的波动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号