首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effects of nitrate concentration on the capability of phosphorus uptake in the main anoxic stage were investigated.Meanwhile, the biomass fractions — heterotrophs, phosphateaccumulating organisms( PAOs),and nitrifying organisms in a pilot-scale enhanced biological phosphorus removal( EBPR) system— were both experimentally and theoretically evaluated( from the mass balance calculations of organic matter, nitrogen and phosphorus),under optimum nitrate concentration in the main anoxic stage,in which the influent chemical oxygen demand( COD)concentration was stabilized at( 290 ± 10) mg·L^- 1and the influent total phosphorus( TP) concentration was stabilized at( 7. 0 ± 0. 5)mg · L^- 1. In long term operations,the process exhibited high performance in removing organic matter, nitrogen, and phosphorus. Approximately 46. 41% of organic matter,57. 21% of nitrogen,and 48. 14% of phosphorus were removed from the influent in the form of carbon dioxide,nitrogen gas,and polyphosphate,respectively. XH( heterotrophs),XPAO( PAOs),and XAUT( autotrophs) were regarded as the major organisms responsible for biomass production. The yield fractions of XHgrowth in the first anoxic,the second anoxic,and the aerobic stages were 10. 24%,19. 11%,and 19. 71%,respectively; the yield fractions of XPAO growth in the second anoxic and the aerobic stages were 24. 34% and19. 86%,respectively; the yield fraction of XAUTgrowth in the aerobic stage was 6. 74%. These results showed that XHand XPAOformed the major community. Moreover,a higher amount of XPAOgrowth on stored poly-hydroxyalkanoates( PHAs) under the anoxic condition was seen in this EBPR system for municipal wastewater treatment.  相似文献   

2.
The study presented the method for isolating the heterotrophic nitrifiers and the characterization of heterotrophic nitrification. When influent Ammonia nitrogen concentration was 42. 78-73. 62 mg/L. The average ammonia nitrogen removal rate was 81,32% from the bio-ceramics reactor. Sodium acetate and ammonium chloride were used as carbon and nitrogen source. The COD removal rates by microorganisms of strain wgy21 and wgy36 were 56.1% and 45.45%, respectively. The TN removal rates by microorganisms of strain wgy21 and wgy36 were 65.85%and 67. 98%, respectively. At the same time, the concentration of ammonium nitrogen was with the removal rates of 75.25% and 84.96%, and it also had the function of producing NO2-N. Sodium acetate and sodium nitrite were used as carbon and nitrogen source. Through the 12days of the aerobic culture, the COD femoral rates by microorganisms of strain wgy21 and wgy36 were 29.25%and 22.08%, respectively. NO2-N concentration decreased slowly. Comparison, similarity of wgy21 and many Acinetobacter sp. ≥99%, similarity of wgy36 and many Acinetobacter sp. ≥99%. Refer to routine physiological-biochemical characteristic determination, further evidences showed that wgy21 and wgy36 belong to Acinetobacter sp.,respectively.  相似文献   

3.
A novel Pressurized Enriched Oxygen Biological Activated Carbon (PRBAC) method in treating secondary effluent of textile dying-printing & alkali peeling wastewater was configured. The PRBAC reactor simply increased reactor pressure to create an eurtched dissolved oxygen (DO) environment to stimulate the bioactivities of microbes on GAC surface for removing refractory organic matter. Rapid Small- Scaled Colunm Test (RSSCT) was carried out to evaluate the adsorption characteristics of target stream constituents, and over 80% COD components were poorly adsorbable while about 82.5% color inducing matter and 85% UV254 surrogated matter were readily adsorbable. Compared with performances of normal BAC reactor under conventional DO condition, PRBAC achieved 20%, 10% and 50% more removal in COD, color and NH3-N abatement.  相似文献   

4.
The equilibrium, kinetics and thermodynamics of the adsorption of methylene blue (MB) from aqueous solution onto copper coordination polymer with dithiooxamide (H2dtoaCu) , one of the metal-organic frameworks (MOFs), were investigated in a batch adsorption system as a function of initial pH, adsorbent concentration, contact time, initial dye concentration, and temperature. The Langmnir, Freundlich, and Dubinin- Radushkevich (D-R) isotherm models were used for modeling the adsorption equilibrium. It was found that Langmuir model yielded a much better fit than the Freundlich model under different temperatures. The maximum monolayer adsorption capacities of MB were 192.98, 229.86, and 297.38 mg/g at 298, 308, and 318 K, respectively. The calculated mean adsorption energy (8.26- 11.04 kJ/mol) using D-R model indicated that the adsorption process might take place by chemical adsorption mechanism. Otherwise, the kinetic studies revealed that the adsorption process could be well explained by pseudo-second-order rate kinetics and intraparticle diffusion was not the rate-limiting step. Thermodynamic studies indicated that this system was feasible, spontaneous, and endothermic process. Based on these studies, H2dtoaCu can be considered as a potential adsorbent for the removal of MB from aqueous solution.  相似文献   

5.
Metal leaching from a low-grade nickel ore was investigated using an ammonium sulfate roasting-water leaching process. The nickel ore was mixed with ammonium sulfate, followed by roasting and finally leaching with water. During the process the effects of the amount of ammonium sulfate, roasting temperature, and roasting time on the leaching recovery of metal elements were analyzed. The optimum technological parameters were determined as follows:ammonium sulfate/ore ratio, 0.8 g/g; roasting temperature, 400℃; and roasting time, 2 h. Under the optimum condition the leaching recoveries of Ni, Cu, Fe, and Mg were 83.48%, 76.24%, 56.43%, and 62.15%, respectively. Furthermore, the dissolution kinetics of Ni and Mg from the nickel ore was studied. The apparent activation energies for the leaching reaction of Ni and Mg were 18.782 and 10.038 kJ·mol-1, which were consistent with the values of diffusion control reactions. Therefore, the results demonstrated that the leaching recoveries of Ni and Mg were controlled by diffusion.  相似文献   

6.
Three strains BQ,BJ,and BS utilizing benzoic acid as the sole carbon source were achieved from Yichang City,Hubei Province,China,through selective enrichment and domestication.Both BQ and BJ were primarily identified as Acinetobacter.spp while BS was Geotrichum.spp.After three domestications,the removal rates of BQ,BJ,and BS to chemical oxygen demand(COD) value of benzoic acid were 62.41%,94.44%,and 43.34%,respectively.The strains were mixed cultured,and the degradation rates of strains to benzoic acid at different temperature,pH and benzoic acid concentration were determined.The results show that the optimum degradation conditions about strains were pH 7.0,temperature 30 ℃,and aerobic with 1 500 mg/L of concentration of benzoic acid.In this condition,the COD removal rate of strains to benzoic acid reached 84.93%.  相似文献   

7.
The continuous flowing experiment using a submerged membrane bioreactor (SMBR) in proteinaceous wastewater treatment was studied. The removal rate of the chemical oxygen demand (COD) was over 96.0% and the biochemical oxygen demand (BOD) was above 98.1%, the average removal rate of the total nitrogen (TN) was 61.7% ,the removal rate of NH3-N was as high as 99% ,but the removal effect of the total phosphorus (TP) was instable. The analysis under the condition of our experiments came to the conclusion that backwashing, waterpower scouting, low-pressure opexation and control of mixed liquor suspended solid (MISS) could lighten the attenuation of filtration flux in SMBR.  相似文献   

8.
Literatures revealed that the electron acceptor-nitrite could be inhibitory or toxic in the denitrifying phosphorus removal process. Batch test experiments were used to investigate the inhibitory effect during the anoxic condition. The inoculated activated sludge was taken from a continuous double-sludge denitrifying phosphorus and nitrogen removal system. Nitrite was added at the anoxic stage. One time injection and sequencing batch injection were carried on in the denitrifying dephosphorus procedure. The results indicated that the nitrite concentration higher than 30 mg/L would inhibit the anoxic phosphate uptake severely,and the threshold inhibitory concentration was dependent on the characteristics of the activated sludge and the operating conditions; instead,lower than the inhibitory concentration would not be detrimental to anoxic phosphorus uptake,and it could act as good electron acceptor for the anoxic phosphate accumulated. Positive effects performed during the denitrifying biological dephosphorus all the time. The utility of nitrite as good electron acceptor would provide a new feasible way in the denitrifying phosphorus process.  相似文献   

9.
Circumstance influence factors on Hybrid Membrane Bio-Reactor (HMBR) process for the wastewater reclamation in dwelling district was analyzed. The main characteristic of this process is that sludge and nitrified effluent can be recycled automatically, which simplifies the operation of system and is beneficial to get the high removal of organics and nitrogen. Based on the analysis of circumstance influence factors, it is recommended that water temperature of about 20℃, influent pH of 6 -7 and DO of 1. 0 mg/L - 1. 5 mg/L in the aerobic compartment. Under these conditions, COD, BOD5, NH4+ -N, and TN were removed effectively in HMBR and the average removal efficiencies were 94.5%, 99.3%, 99.4% and 84.7%, respectively. SS and coliforms were both below the detection limits in the permeate of UF membrane module, and turbidity was less than 1NTU. The treated effluent meets the Miscellaneous Domestic Water Quality Standard (CJ25.1-89), and can be reused multipurposely such as watering of green belts, cleaning a  相似文献   

10.
Degradation kinetics and mechanisms of phenolin photo-Fenton process   总被引:2,自引:0,他引:2  
Phenol degradation in photochemically enhanced Fenton process was investigated in this work. UV-VIS spectra of phenol degradation showed the difference between photo-Fenton process and UV/H2O2, which is a typical hydroxyl radical process. A possible pathway diagram for phenol degradation in photo-Fenton process was proposed, and a mathematical model for chemical oxygen demand (COD) removal was developed. Operating parameters such as dosage of H2O2 and ferrous ions, pH, suitable carrier gas were found to impact the removal of COD significantly. The results and analysis of kinetic parameters calculated from the kinetic model showed that complex degradation of phenol was the main pathway for removal of COD: while hydroxyl radicals acted weakly in the photo-Fenton degradation of phenol.  相似文献   

11.
COD进水浓度对SBMBBR脱氮除磷效果影响   总被引:8,自引:0,他引:8  
研究了序批式移动床生物膜反应器(SBMBBR)中COD进水浓度对同步脱氮除磷效果的影响.维持进水PO3-4-P浓度为10 mg/L、NH3-N浓度为40 mg/L左右,COD浓度为200~800 mg/L,研究了反应器的脱氮除磷效果.结果表明:厌氧释磷量在COD进水浓度为450 mg/L时达到最大,为61.2 mg/L;之后,增加COD进水浓度不利于磷的释放.在厌氧段初期,TN便有超过30%的损失,可能是因生物吸附造成的.好氧时TN和磷均损失较大,说明在生物膜上很可能发生了同时硝化反硝化和反硝化聚磷.一定范围的COD浓度能促进TN的去除.TN去除率在COD进水浓度为450 mg/L时达到最大,为87.8%,氮磷的去除与生物膜的生物量和生物膜厚度密切相关.  相似文献   

12.
温度和溶解氧对短程同步硝化反硝化脱氮效果的影响   总被引:1,自引:0,他引:1  
利用序批式活性污泥反应器(SBR)研究了不同温度、溶解氧(DO)条件下的短程同步硝化反硝化(SND)过程特征及处理效果.本试验最佳温度控制范围在15~25℃,当DO在0.5~1.0 mg·L-1时,氨氮(NH4+-N)去除率均在95%~98%,总氮(TN)去除率为85%~87%,化学需氧量(COD)的去除率达到90%~...  相似文献   

13.
螺旋升流式反应器(Spiral Up-Flow Reactor,SUFR)是一种新型的污水处理工艺,该工艺对污水中COD、TN、TP的去除效果较好,出水浓度分别低于28 mg/L、10 mg/L和0.5mg/L.本文对螺旋升流式反应器脱氮除磷系统中的反硝化吸磷现象进行了深入的研究,通过分析发现,适当的COD浓度和DO浓度有利于同时反硝化吸磷现象的发生。  相似文献   

14.
以污水厂初沉池出水作为研究对象,考察了常温(8~20℃)条件下,处理规模为5 m3/h的一体化厌氧/好氧生物反应器同步脱氮除磷的效果.试验中,系统脱氮始终存在同步硝化反硝化现象.通过低氧条件下亚硝酸盐的富集,系统进入稳定脱氮期.在稳定脱氮期,反应器出水亚硝酸盐平均累积率达82.52%,系统脱氮以亚硝酸盐型同步硝化反硝化的方式为主,实现了短程同步脱氮及磷和有机物的协同去除.TN,TP和COD平均去除率分别为77.4%,87.7%和90.4%.在该研究条件下,DO质量浓度的最佳控制范围是(0.25±0.10)mg/L.  相似文献   

15.
采用活性炭涂层改性悬浮填料,在连续曝气的条件下,考察了SBBR 反应器脱氮性能。结果表明,SBBR反应器表现出良好的同步硝化反硝化(SND)脱氮性能,对NH3-N 和TN 的去除率分别为80.7%和63.1%。典型周期内反应器同步硝化反硝化率可达82.7%。单因素试验发现,脱氮率随着曝气时间狋的增加而增加,随着溶解氧质量浓度ρDO和填料投加量δ增大而先增大后减小。同时,以溶解氧质量浓度、填料投加量和曝气时间为考察因素,脱氮率为评价指标,采用响应曲面法建立了二次多元回归模型。通过模型求解得出最佳工况:溶解氧浓度为2.37 mg/L,填料投加量为40.10%,曝气时间为5.17 h,此时,脱氮率得到最大值为69.28%。验证试验表明,回归模型的预测值与实测值偏差率为1.57%。  相似文献   

16.
研究模拟污水处理厂进水以非稳态正弦曲线波动,通过调整非稳态进水平衡位置时好氧段不同的初始DO浓度,研究非稳态进水对分段进水工艺污染物去除的影响及控制策略控制参数.结果表明,通过恒定曝气量并控制好氧段初始DO浓度为2mg·L-1,出水平均COD、氨氮、总氮、总磷浓度最佳,分别为21.82,0.59,11.87和0.26mg·L-1;随着进水流量的非稳态波动,周期内出水COD以分段函数规律变化,出水氨氮、总氮和总磷以正弦曲线波动;从改良A/O 4点分段进水工程化设计角度考虑,设计总处理量的变化系数为1.25时可认为在安全系数范围内.   相似文献   

17.
采用人工模拟的高氨氮城市污水,对厌氧/好氧/缺氧(A/O/A)序批式活性污泥法反应器内短程同步硝化/反硝化耦合除磷过程的实现及稳定性进行研究.对一个典型周期内水质变化情况进行测定和分析,系统对化学需氧量(COD)、氨氮(NH+4-N)、总氮(TN)、总磷(TP)去除率分别为94.8%,97.6%,89.4%,93.1%.调节曝气量以改变溶解氧质量浓度,结果表明:随着溶解氧质量浓度升高,亚硝化率由97%下降至20%;溶解氧质量浓度过低,会抑制好氧阶段的吸磷过程;溶解氧质量浓度过高,会影响好氧、缺氧阶段磷的有效吸收.  相似文献   

18.
以模拟废水为对象,在传统的流化床反应器内,将活性污泥和经驯化的反硝化污泥按适当比例混合后,用聚乙烯醇(PVA)加适当添加剂将其包埋,并对短程硝化反硝化脱氮进行了研究.结果表明,在进水NH4+-N平均为53.60mg/L,COD为281.19mg/L,HRT12h,调控温度、溶解氧、pH等,出水亚硝化率和TN去除率分别可达95%和85%以上,短程硝化反硝化脱氮较理想.当进水COD含量从150mg/L增加到750mg/L,TN去除率从73.66%提高到96.79%.适合包埋颗粒短程硝化反硝化脱氮的最佳溶解氧浓度约为4.0mg/L.当pH一直维持在8.0左右,温度从30℃降到25℃过程中,短程硝化反硝化并未遭破坏.当温度维持在25℃,pH从8.0降到7.5,连续运行约5个周期后,短程硝化反硝转变为全程的硝化反硝化.  相似文献   

19.
以COD/TN为2.7左右的实际生活污水为处理对象,通过调整系统曝气量,研究了DO对多段式生物接触氧化法脱氮除磷系统运行性能的影响。结果表明,设定的5组DO条件下,处理效果与前、后端DO浓度差异有关。当前段DO为3-4mg/L,后段DO为4-5mg/L时,COD、TN的去除率90%、81%,满足GB18918-2002污水排放一级A标准,装置污泥量很少,没有剩余污泥排放,TP去除效果稍差。通过对装置生物多样性和生物膜质量的分析,表明DO浓度的差异性变化,为生物膜上微生物同步硝化反硝化创造了条件。  相似文献   

20.
将电极生物膜法(BER)与序批式生物膜法(SBBR)结合以实现两种技术的优势互补,通过处理人工模拟废水,探讨了电极-SBBR工艺参数中电流强度(IA)、溶解氧质量浓度(cDO)及进水碳氮比对脱氮去除效果的影响.结果表明,在电化学与生物化学的协同作用下,体系的同步硝化反硝化作用得到了加强,取得了较好的脱氮效果,总氮(TN)的平均去除效率可达72.5%.优化运行参数:当IA为80mA,溶解氧质量浓度为3~5mg/L,碳氮比为6左右时,TN的平均去除率可达80%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号