首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
针对电除尘细颗粒物(PM2.5)排放控制,提出利用电除尘指数指导电除尘本体和电源设计选型技术的原理和方法,并介绍电除尘改造的应用案例。通过优化电除尘指数、采用三相高压电源开展电除尘改造和选型。通过电除尘和脱硫塔除雾器的同步改造,可以实现烟囱出口颗粒物排放浓度低于5 mg/m3,同时,PM2.5(直径2.5μm以下的颗粒物)排放浓度低于2.5 mg/m3。示范工程还表明当电除尘器出口PM10(直径10μm以下的颗粒物)排放在6~30 mg/m3时,PM2.5占PM10比例为6%至20%;当PM10排放在5~15 mg/m3时,PM2.5排放可低于2.5 mg/m3。  相似文献   

2.
本文讨论优化双室四电场电除尘器(ESP)所配套的16台中荷(ZH)三相高压电源和低压振打系统实现电除尘节能和减排。在16台传统单相高压电源供电下,电除尘出口PM10和PM2.5的排放分别为63 mg/m3和23.9 mg/m3,对应的高压一次电耗为1225 k V·A。采用16台ZH三相高压电源改造后,电除尘出口PM10和PM2.5的排放分别为10~16 mg/m3和2.0~2.5 mg/m3,对应的高压一次电耗为900~1050 k V·A。在同样高电压电耗下,PM10和PM2.5分别下降了78%和92%。  相似文献   

3.
讨论了4台典型电除尘改造和细颗粒物(PM2.5)排放控制,对四电场电除尘器通过本体小分区和电源改造实现了颗粒物(PM10)和细颗粒物(PM2.5)的超低排放控制。仅对五电场电除尘器进行电源改造,即可实现PM10和PM2.5的超低排放,电除尘出口PM10和PM2.5可分别控制在15和2 mg/m3以下。脱硫塔对PM10有较好的捕集效果,但对PM2.5的去除几乎没有效果。电除尘振打引起的二次飞扬过程及烟气温度也影响PM10和PM2.5的排放,当烟气温度从150~160℃降低到约110℃时,电除尘出口及脱硫塔出口的PM2.5均在2 mg/m3以下。  相似文献   

4.
分析了2×600 MW机组所配套的两台双室五电场电除尘器(ESP)的设计、选型和改造。每台电除尘配套20台高压电源、一台炉配40台高压电源,改造工作不仅包括更换原80台单相电源为80台三相电源,而且将第一和第二电场的极板、极线及振打系统全部做了更换,改造后电除尘出口PM_(10)和PM_(2.5)(粒径分别低于10μm和2.5μm的颗粒物)的排放分别低于15 mg·Nm~(-3)和1.0 mg·Nm~(-3),PM_(2.5)占PM_(10)的比例在6.5%-7.5%,与改造前比较PM_(2.5)下降了95%以上。  相似文献   

5.
 以嘉兴协鑫环保热电75 t/h 工业锅炉为例, 讨论电除尘器改造和运行降低PM10和PM2.5 (粒径低于10 和2.5 μm 的颗粒物)的排放。单室四电场电除尘在传统单相高压电源供电下, 电除尘出口PM10和PM2.5的排放可达120.4~219.7 和9.6~22.3 mg·Nm-3, 在本体检修和采用4 台三相高压电源改造后, 电除尘出口的PM10和PM2.5出口质量浓度可分别降至6.0~17.0 和1.8~3.3mg·Nm-3, 电除尘出口PM2.5与PM10的比例通常在35%~52%。  相似文献   

6.
 针对电除尘细颗粒物(PM2.5)排放控制,提出利用电除尘指数指导电除尘本体和电源设计选型技术的原理和方法,并介绍电除尘改造的应用案例.通过优化电除尘指数、采用三相高压电源开展电除尘改造和选型.通过电除尘和脱硫塔除雾器的同步改造,可以实现烟囱出口颗粒物排放浓度低于5 mg/m3,同时,PM2.5 (直径2.5 μm 以下的颗粒物)排放浓度低于2.5 mg/m3.示范工程还表明当电除尘器出口PM10(直径10 μm 以下的颗粒物)排放在6~30 mg/m3时,PM2.5占PM10比例为6%至20%;当PM10排放在5~15 mg/m3时,PM2.5排放可低于2.5 mg/m3.  相似文献   

7.
 通过对比660 MW 燃煤锅炉电除尘改造前后细颗粒物(PM2.5)和颗粒物(PM10)的排放,讨论电除尘改造的必要性及可行性.四电场电除尘器在常规单相电源供电下,PM10和PM2.5的排放浓度分别在63 和23 mg/m3左右,总排放在75 mg/m3左右;采用三相高压电源时PM10和PM2.5的排放可控制在15 和2.5 mg/m3以下,总排放在18 mg/m3左右,PM10和PM2.5的排放分别减排76%和89%以上.  相似文献   

8.
 讨论了4 台典型电除尘改造和细颗粒物(PM2.5)排放控制,对四电场电除尘器通过本体小分区和电源改造实现了颗粒物(PM10)和细颗粒物(PM2.5)的超低排放控制.仅对五电场电除尘器进行电源改造,即可实现PM10和PM2.5的超低排放,电除尘出口PM10和PM2.5可分别控制在15 和2 mg/m3以下.脱硫塔对PM10有较好的捕集效果,但对PM2.5的去除几乎没有效果.电除尘振打引起的二次飞扬过程及烟气温度也影响PM10和PM2.5的排放,当烟气温度从150~160℃降低到约110℃时,电除尘出口及脱硫塔出口的PM2.5均在2 mg/m3以下.  相似文献   

9.
 分析了2×600 MW机组所配套的两台双室五电场电除尘器(ESP)的设计、选型和改造。每台电除尘配套20台高压电源、一台炉配40台高压电源,改造工作不仅包括更换原80台单相电源为80台三相电源,而且将第一和第二电场的极板、极线及振打系统全部做了更换,改造后电除尘出口PM10和PM2.5(粒径分别低于10 μm和2.5 μm的颗粒物)的排放分别低于15 mg·Nm-3和1.0 mg·Nm-3,PM2.5占PM10的比例在6.5%~7.5%,与改造前比较PM2.5下降了95%以上。  相似文献   

10.
于2009年10月至2010年8月间采集郑州市大气颗粒物PM2.5与PM10样品,对其质量浓度及水溶性离子进行分析研究.结果表明:PM2.5在秋、冬、春、夏四季的质量浓度的平均值分别为134.9、121.6、77.9和102.0μg/m3,PM10在秋、冬、春、夏四季的质量浓度的平均值分别为193.2、184.0、140.9和140.5μg/m3,日均值超标率分别达77.8%和59%.PM2.5和PM10质量浓度呈现很好的相关性,春季粗粒子在PM10中的比例相对较高,而秋、冬和夏季细粒子是PM10的主要组成部分.主要的水溶性离子是SO2-4、NO-3和NH+4,大部分以(NH4)2SO4和NH4NO3形式存在;NO-3和SO2-4质量比小于1,说明采样期间郑州市大气以固定排放源污染为主.  相似文献   

11.
为了解太原市PM10和PM2.5中重金属污染状况,采集了太原市春季环境空气中可吸入颗粒物(PM10)和细颗粒物(PM2.5)样品,利用等离子体发射光谱仪对样品中As和8种重金属(Mn,Cu,Zn,Pb,Cr,Ni,Co,Cd)的含量进行测定,并对As和重金属健康风险进行评价。结果显示:太原市PM10和PM2.5中均以Zn的质量浓度最大,分别为369.08ng/m3和271.74ng/m3;As的质量浓度相对较小,分别为3.41ng/m3和2.33ng/m3;各点位As、Cu、Zn、Pb、Cr和Cd元素主要显含在PM2.5中。PM10和PM2.5通过呼吸吸入途径产生的成人非致癌风险和致癌风险为儿童的3.98~4.00倍;非致癌风险总和(Hi)低于人体可接受的水平,不具有非致癌风险;PM2.5和PM10的致癌风险介于人体可接受范围,不具有致癌风险。各点位As和重金属在PM2.5和PM10中的非致癌风险比值PHi小于1;1号、3号点位致癌风险比值QR大于1,且对人体健康危害最严重的为可吸入颗粒物PM10,需引起高度重视。  相似文献   

12.
燃煤锅炉烟尘颗粒物中PM_(2.5)排放规律研究   总被引:1,自引:0,他引:1  
为澄清发电厂和工业锅炉联合除尘设备的烟尘排放特征,特别是PM2.5排放规律,选取太原市6台不同类型、容量和除尘方式的燃煤锅炉,采用激光粒度分析仪对采集的烟尘(颗粒物)进行粒径测定,讨论分析PM2.5的排放规律。结果表明,除尘设施前后颗粒物分布规律不同,除尘器前PM2.5呈单峰分布,最大峰值为60~70μm;除尘器后PM2.5呈多峰分布,最大峰值为12~17μm;除尘设施对粒径较大颗粒物的去除率明显高于细颗粒物,对细小颗粒物的除尘效率随锅炉容量的增大而增大;电袋复合除尘器对PM2.5去除率最高,其次为布袋除尘器、静电除尘器;太原市燃煤锅炉PM2.5排放因子范围为0.06~0.52kg/t,锅炉负荷越大,除尘率越高,PM2.5排放因子越小。研究结果可为山西省煤烟尘污染控制提供重要的数据支撑,为获知影响燃煤锅炉烟尘颗粒物中PM2.5排放的因素及采取相应技术提供了理论依据。  相似文献   

13.
对哈尔滨市大气环境中的PM10、PM2.5进行了采集,并对质量浓度及离子成分进行了分析.实验结果表明,两种颗粒物均呈现了先减小后增大的特征,最高值出现在1月,质量浓度分别是178.85、130.10μg/m3,PM10在1、2、3、4、11、12月均超标,而PM2.5质量浓度则高出欧盟标准(15μg/m3)的2~8倍,另外,离子总质量浓度在8月达到了最低值,分别是42.73μg/m3和25.3μg/m3.PM10和PM2.5中离子成分占颗粒物总质量的比例均表现为中间高两边低的特点,最高含量出现在7月份,分别为67.7%和68.4%.根据相关系数的判别原则,PM10中表现为高度负相关的离子是Ca2+和F-、Ca2+和SO42+、Ca2+和NO3-;表现为高度正相关的离子是K+和Mg2+、K+和Cl-、M2+和Cl-、F-和SO42+、F-和NO3-、SO42+和NO3-,说明上述离子间有相似的污染来源.PM2.5中表现为高度正相关的离子是K+和Cl-、K+和SO42+、K+和NO3-、Mg2+和SO42+、F-和NO3-、SO42+和NO3-,与PM10中离子相关性规律不同.  相似文献   

14.
利用粒子成像测速法(PIV)和电子低压冲击仪(ELPI),研究实验室规模的电除尘器(ESP)内电场强度、电晕放电功率和气流场等因素对PM10(粒径小于10μm的颗粒物)分级收尘效率。电除尘器为线-板式电极结构,其中板-板间距为200 mm,高电压电极为单根或双根。实验颗粒物采用艾灸烟作为示踪粒子,气体流量85 m3/h,颗粒物初始质量浓度33 mg/m3左右。实验结果表明,随着电场强度或电晕放电功率的增加,在高压电晕极线周围气流场从有规律的单个涡旋发展为相互作用的多个涡旋,优化电晕放电离子风分布是提高PM10收集效率和降低电耗的关键。从颗粒物个数浓度、外加电场或电晕放电功率看,可将电除尘器性能以电场强度为3 k V/cm为界分为2个区域。当电场强度低于3 k V/cm时,分级除尘效率随着电场强度或电除尘指数的增加而增加。然而,当电场强度远大于3 k V/cm时,收尘效率基本不变或降低。  相似文献   

15.
为了降低湿法脱硫系统(WFGD)出口PM2.5的排放量,在模拟WFGD和燃煤热态实验系统中进行了添加化学团聚剂的试验.考察了脱硫液细小晶粒含量与出口PM2.5浓度的关系以及团聚剂对脱硫液颗粒物粒径分布的影响,并对团聚剂类型、浓度、温度及脱硫操作条件等对脱硫系统的影响进行了研究,同时考察了团聚剂的加入对脱硫的影响.结果表明:WFGD出口PM2.5排放量与浆液细小晶粒含量成正相关,添加化学团聚剂可有效降低脱硫浆液中细小晶粒的数量,脱硫液中细颗粒物相对体积浓度降低38%;燃煤热态系统下添加化学团聚剂可有效降低PM2.5排放量,数量浓度降低约20%;非离子型聚丙烯酰胺团聚效果最明显,团聚效果随着脱硫液温度的升高而升高,脱硫液气比控制在15~20 L/m3范围内比较合适,团聚剂加入不会影响脱硫性能.  相似文献   

16.
采用实际燃煤烟气试验系统,测试分析了湿式电除尘器进口粉尘和SO_3酸雾的粒度分布,考察了电压、烟温和入口浓度等对湿式电除尘器脱除PM2.5和SO_3酸雾性能的影响.结果表明,湿式电除尘器进口粉尘和SO_3酸雾均以亚微米颗粒为主;提高湿式电除尘器电压后不同粒径脱除效率的增幅各不相同,湿式电除尘器对于PM2.5的脱除仍然以较大颗粒为主,相同条件下降低烟温有利于颗粒通过水汽相变和凝并作用而长大;湿式电除尘器对SO_3酸雾的脱除效率总体上在30%~60%之间;烟气中存在SO_3酸雾可增强湿式电除尘对细颗粒的脱除效果.  相似文献   

17.
采用鲁米诺增强的化学发光法研究粉笔PM2.5/PM10诱导大鼠肺泡巨噬细胞(AMs)产生活性氧(ROS)和活性氮(RNS)的能力,并运用抗霉素A,超氧化物歧化酶(SOD),二苯基氯化碘盐(DPI)和左旋-N-硝基精氨酸甲酯(L-NAME)等抑制剂来确定ROS和RNS产生来源。结果发现粉笔PM2.5/PM10能诱导AMs产生化学发光,1mmol/L L-NAME可显著抑制粉笔PM2.5/PM10诱导AMs的化学发光。CaSO4/CaCO3PM2.5或PM10也可浓度依赖地诱导AMs产生化学发光,且CaSO4/CaCO3相同组分的颗粒粒径越小,诱导化学发光能力越强。CaCO3PM2.5或PM10诱导化学发光的能力远远强于同粒径CaSO4PM2.5或PM10,结果具有统计学意义。研究也发现,抗霉素A,SOD,DPI和L-NAME可显著抑制CaSO4/CaCO3PM2.5或PM10诱导AMs化学发光。这些结果提示粉笔诱导AMs生成的ROS可能源于细胞内NADPH氧化酶和线粒体complexⅢ,RNS则源于细胞内一氧化氮合酶激活。CaSO4和CaCO3是粉笔PM2.5/PM10诱导产生ROS/RNS的主要因素。  相似文献   

18.
为了解重庆万州区PM2.5中碳质气溶胶的污染特征,于2012—2013年分4个季节采集了PM2.5样品,并分析了其中有机碳(OC)和元素碳(EC)的浓度。结果显示,在采样期间,万州区PM2.5中OC和EC的年平均质量浓度分别为29.72μg·m-3和8.42μg·m-3,OC和EC浓度之和达PM2.5的27.25%。OC浓度的季节变化趋势由高到低分别为冬季、秋季、春季和夏季,EC在冬季浓度最高,其他季节浓度变化不大。OC和EC在4个季节都有较好的相关性(r为0.67~0.84),其中,冬季相关性(r=0.84)最高,秋季相关性(r=0.67)最差,这与污染物来源复杂有关。应用OC/EC比值法对二次有机碳(SOC)进行估算,SOC年平均浓度为13.79μg·m-3,占OC含量的46.72%,冬季SOC的浓度远高于其他季节,冬季较高的OC排放及较低的大气扩散能力利于碳气溶胶中SOC的生成。  相似文献   

19.
为了解忻州市大气气溶胶中水溶性离子的特征及来源,分别在非采暖季、采暖季和风沙季对忻州市3个固定采样点大气中PM2.5和PM10样品中的水溶性无机离子浓度进行了定量分析.结果表明,忻州市大气PM2.5和PM10浓度分别为89.97、180.12μg/m3,颗粒物中SO2-4、NO-3、NH+4及Ca2+是其主要离子,其质量浓度总和分别占PM2.5和PM10总质量浓度的24.19%和24.15%.SO2-4、NH+4、Cl-、K+主要分布在细颗粒物中,Ca2+、Mg2+主要集中在粗颗粒物中,Na+与NO-3在粗细颗粒物中比例差别不大;风沙季中Ca2+、Mg2+的百分比大于采暖季与非采暖季,采暖季里Cl-的比例大于其余2季.主成分分析表明,忻州市风沙季中颗粒物水溶性离子的最主要来源是风沙扬尘;采暖季PM2.5中离子的最主要来源是燃煤和二次生成;非采暖季PM2.5中水溶性离子的最主要来源为二次生成.  相似文献   

20.
2012年选取与气象站点相邻的一个环境空气质量测点对PM2.5进行了研究性监测,测点距地面23m,全年PM2.5质量浓度在19~284μg/m3之间,年均质量浓度为89μg/m3,月均质量浓度最高的为1月.系统分析全年PM2.5监测质量浓度与相邻气象测点灰霾、能见度观测数据之间的关系,得到以下结论:宜昌市城区PM2.5污染质量浓度与灰霾观测值相关性不强,但与能见度的观测值显著相关;全年能见度降低受PM2.5污染的影响具有季节性,2、5~6三个月与7~9三个月及4、10~11三个月,这3组月份内的PM2.5与能见度之间的回归曲线基本一致,全年中3月份影响最大,而1月份最小,主要与气温、风速、降雨因素有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号