首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ice-sheet acceleration driven by melt supply variability   总被引:2,自引:0,他引:2  
Schoof C 《Nature》2010,468(7325):803-806
Increased ice velocities in Greenland are contributing significantly to eustatic sea level rise. Faster ice flow has been associated with ice-ocean interactions in water-terminating outlet glaciers and with increased surface meltwater supply to the ice-sheet bed inland. Observed correlations between surface melt and ice acceleration have raised the possibility of a positive feedback in which surface melting and accelerated dynamic thinning reinforce one another, suggesting that overall warming could lead to accelerated mass loss. Here I show that it is not simply mean surface melt but an increase in water input variability that drives faster ice flow. Glacier sliding responds to melt indirectly through changes in basal water pressure, with observations showing that water under glaciers drains through channels at low pressure or through interconnected cavities at high pressure. Using a model that captures the dynamic switching between channel and cavity drainage modes, I show that channelization and glacier deceleration rather than acceleration occur above a critical rate of water flow. Higher rates of steady water supply can therefore suppress rather than enhance dynamic thinning, indicating that the melt/dynamic thinning feedback is not universally operational. Short-term increases in water input are, however, accommodated by the drainage system through temporary spikes in water pressure. It is these spikes that lead to ice acceleration, which is therefore driven by strong diurnal melt cycles and an increase in rain and surface lake drainage events rather than an increase in mean melt supply.  相似文献   

2.
Climatology: threatened loss of the Greenland ice-sheet   总被引:1,自引:0,他引:1  
Gregory JM  Huybrechts P  Raper SC 《Nature》2004,428(6983):616
The Greenland ice-sheet would melt faster in a warmer climate and is likely to be eliminated--except for residual glaciers in the mountains--if the annual average temperature in Greenland increases by more than about 3 degrees C. This could raise the global average sea-level by 7 metres over a period of 1,000 years or more. We show here that concentrations of greenhouse gases will probably have reached levels before the year 2100 that are sufficient to raise the temperature past this warming threshold.  相似文献   

3.
Antarctic ice-sheet loss driven by basal melting of ice shelves   总被引:6,自引:0,他引:6  
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.  相似文献   

4.
Bell RE  Studinger M  Shuman CA  Fahnestock MA  Joughin I 《Nature》2007,445(7130):904-907
Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.  相似文献   

5.
Raper SC  Braithwaite RJ 《Nature》2006,439(7074):311-313
The mean sea level has been projected to rise in the 21st century as a result of global warming. Such projections of sea level change depend on estimated future greenhouse emissions and on differing models, but model-average results from a mid-range scenario (A1B) suggests a 0.387-m rise by 2100 (refs 1, 2). The largest contributions to sea level rise are estimated to come from thermal expansion (0.288 m) and the melting of mountain glaciers and icecaps (0.106 m), with smaller inputs from Greenland (0.024 m) and Antarctica (- 0.074 m). Here we apply a melt model and a geometric volume model to our lower estimate of ice volume and assess the contribution of glaciers to sea level rise, excluding those in Greenland and Antarctica. We provide the first separate assessment of melt contributions from mountain glaciers and icecaps, as well as an improved treatment of volume shrinkage. We find that icecaps melt more slowly than mountain glaciers, whose area declines rapidly in the 21st century, making glaciers a limiting source for ice melt. Using two climate models, we project sea level rise due to melting of mountain glaciers and icecaps to be 0.046 and 0.051 m by 2100, about half that of previous projections.  相似文献   

6.
Rapid discharge connects Antarctic subglacial lakes   总被引:5,自引:0,他引:5  
Wingham DJ  Siegert MJ  Shepherd A  Muir AS 《Nature》2006,440(7087):1033-1036
The existence of many subglacial lakes provides clear evidence for the widespread presence of water beneath the East Antarctic ice sheet, but the hydrology beneath this ice mass is poorly understood. Such knowledge is critical to understanding ice flow, basal water transfer to the ice margin, glacial landform development and subglacial lake habitats. Here we present ice-sheet surface elevation changes in central East Antarctica that we interpret to represent rapid discharge from a subglacial lake. Our observations indicate that during a period of 16 months, 1.8 km3 of water was transferred over 290 km to at least two other subglacial lakes. While viscous deformation of the ice roof above may moderate discharge, the intrinsic instability of such a system suggests that discharge events are a common mode of basal drainage. If large lakes, such as Lake Vostok or Lake Concordia, are pressurizing, it is possible that substantial discharges could reach the coast. Our observations conflict with expectations that subglacial lakes have long residence times and slow circulations, and we suggest that entire subglacial drainage basins may be flushed periodically. The rapid transfer of water between lakes would result in large-scale solute and microbe relocation, and drainage system contamination from in situ exploration is, therefore, a distinct risk.  相似文献   

7.
LJ Gregoire  AJ Payne  PJ Valdes 《Nature》2012,487(7406):219-222
The last deglaciation (21 to 7 thousand years ago) was punctuated by several abrupt meltwater pulses, which sometimes caused noticeable climate change. Around 14 thousand years ago, meltwater pulse 1A (MWP-1A), the largest of these events, produced a sea level rise of 14-18?metres over 350?years. Although this enormous surge of water certainly originated from retreating ice sheets, there is no consensus on the geographical source or underlying physical mechanisms governing the rapid sea level rise. Here we present an ice-sheet modelling simulation in which the separation of the Laurentide and Cordilleran ice sheets in North America produces a meltwater pulse corresponding to MWP-1A. Another meltwater pulse is produced when the Labrador and Baffin ice domes around Hudson Bay separate, which could be associated with the '8,200-year' event, the most pronounced abrupt climate event of the past nine thousand years. For both modelled pulses, the saddle between the two ice domes becomes subject to surface melting because of a general surface lowering caused by climate warming. The melting then rapidly accelerates as the saddle between the two domes gets lower, producing nine metres of sea level rise over 500 years. This mechanism of an ice 'saddle collapse' probably explains MWP-1A and the 8,200-year event and sheds light on the consequences of these events on climate.  相似文献   

8.
Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 degrees C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.  相似文献   

9.
Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61?±?7?gigatonnes per year (Gt?yr(-1)) of ice, contributing 0.17?±?0.02 mm?yr(-1) to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004-2006 and 2007-2009, the rate of mass loss sharply increased from 31?±?8?Gt?yr(-1) to 92?±?12?Gt?yr(-1) in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64?±?14?Gt?yr(-1) per 1?K increase). The duration of the study is too short to establish a long-term trend, but for 2007-2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica.  相似文献   

10.
Large fluctuations in speed on Greenland's Jakobshavn Isbrae glacier   总被引:1,自引:0,他引:1  
Joughin I  Abdalati W  Fahnestock M 《Nature》2004,432(7017):608-610
It is important to understand recent changes in the velocity of Greenland glaciers because the mass balance of the Greenland Ice Sheet is partly determined by the flow rates of these outlets. Jakobshavn Isbrae is Greenland's largest outlet glacier, draining about 6.5 per cent of the ice-sheet area, and it has been surveyed repeatedly since 1991 (ref. 2). Here we use remote sensing data to measure the velocity of Jakobshavn Isbrae between 1992 and 2003. We detect large variability of the velocity over time, including a slowing down from 6,700 m yr(-1) in 1985 to 5,700 m yr(-1) in 1992, and a subsequent speeding up to 9,400 m yr(-1) by 2000 and 12,600 m yr(-1) in 2003. These changes are consistent with earlier evidence for thickening of the glacier in the early 1990s and rapid thinning thereafter. Our observations indicate that fast-flowing glaciers can significantly alter ice discharge at sub-decadal timescales, with at least a potential to respond rapidly to a changing climate.  相似文献   

11.
Bell RE  Studinger M  Tikku AA  Clarke GK  Gutner MM  Meertens C 《Nature》2002,416(6878):307-310
The subglacial Lake Vostok may be a unique reservoir of genetic material and it may contain organisms with distinct adaptations, but it has yet to be explored directly. The lake and the overlying ice sheet are closely linked, as the ice-sheet thickness drives the lake circulation, while melting and freezing at the ice-sheet base will control the flux of water, biota and sediment through the lake. Here we present a reconstruction of the ice flow trajectories for the Vostok core site, using ice-penetrating radar data and Global Positioning System (GPS) measurements of surface ice velocity. We find that the ice sheet has a significant along-lake flow component, persistent since the Last Glacial Maximum. The rates at which ice is frozen (accreted) to the base of the ice sheet are greatest at the shorelines, and the accreted ice layer is subsequently transported out of the lake. Using these new flow field and velocity measurements, we estimate the time for ice to traverse Lake Vostok to be 16,000-20,000 years. We infer that most Vostok ice analysed to date was accreted to the ice sheet close to the western shoreline, and is therefore not representative of open lake conditions. From the amount of accreted lake water we estimate to be exported along the southern shoreline, the lake water residence time is about 13,300 years.  相似文献   

12.
Barnett TP  Adam JC  Lettenmaier DP 《Nature》2005,438(7066):303-309
All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate--for example, on the frequency of heatwaves--this increase in surface temperatures has important consequences for the hydrological cycle, particularly in regions where water supply is currently dominated by melting snow or ice. In a warmer world, less winter precipitation falls as snow and the melting of winter snow occurs earlier in spring. Even without any changes in precipitation intensity, both of these effects lead to a shift in peak river runoff to winter and early spring, away from summer and autumn when demand is highest. Where storage capacities are not sufficient, much of the winter runoff will immediately be lost to the oceans. With more than one-sixth of the Earth's population relying on glaciers and seasonal snow packs for their water supply, the consequences of these hydrological changes for future water availability--predicted with high confidence and already diagnosed in some regions--are likely to be severe.  相似文献   

13.
Mitrovica JX  Tamisiea ME  Davis JL  Milne GA 《Nature》2001,409(6823):1026-1029
Global sea level is an indicator of climate change, as it is sensitive to both thermal expansion of the oceans and a reduction of land-based glaciers. Global sea-level rise has been estimated by correcting observations from tide gauges for glacial isostatic adjustment--the continuing sea-level response due to melting of Late Pleistocene ice--and by computing the global mean of these residual trends. In such analyses, spatial patterns of sea-level rise are assumed to be signals that will average out over geographically distributed tide-gauge data. But a long history of modelling studies has demonstrated that non-uniform--that is, non-eustatic--sea-level redistributions can be produced by variations in the volume of the polar ice sheets. Here we present numerical predictions of gravitationally consistent patterns of sea-level change following variations in either the Antarctic or Greenland ice sheets or the melting of a suite of small mountain glaciers. These predictions are characterized by geometrically distinct patterns that reconcile spatial variations in previously published sea-level records. Under the--albeit coarse--assumption of a globally uniform thermal expansion of the oceans, our approach suggests melting of the Greenland ice complex over the last century equivalent to -0.6 mm yr(-1) of sea-level rise.  相似文献   

14.
Siegert MJ  Kwok R  Mayer C  Hubbard B 《Nature》2000,403(6770):643-646
It has now been known for several years that a 200-km-long lake, called Lake Vostok, lies beneath the ice sheet on which sits Vostok Station in Antarctica. The conditions at the base of the ice sheet above this subglacial lake can provide information about the environment within the lake, including the likelihood that it supports life. Here we present an analysis of the ice-sheet structure from airborne 60-MHz radar studies, which indicates that distinct zones of basal ice loss and accretion occur at the ice-water interface. Subglacial melting and net ice loss occur in the north of the lake and across its 200-km-long western margin, whereas about 150 m of ice is gained by subglacial freezing in the south. This indicates that significant quantities of water are exchanged between the base of the ice sheet and the lake waters, which will enrich the lake with gas hydrates, cause sediment deposition and encourage circulation of the lake water.  相似文献   

15.
The response of grounded ice sheets to a changing climate critically influences possible future changes in sea level. Recent satellite surveys over southern Greenland show little overall elevation change at higher elevations, but large spatial variability. Using satellite studies alone, it is not possible to determine the geophysical processes responsible for the observed elevation changes and to decide if recent rates of change exceed the natural variability. Here we derive changes in ice-sheet elevation in southern Greenland, for the years 1978-88, using a physically based model of firn densification and records of annual snow accumulation reconstructed from 12 ice cores at high elevation. Our patterns of accumulation-driven elevation change agree closely with contemporaneous satellite measurements of ice-sheet elevation change, and we therefore attribute the changes observed in 1978-88 to variability in snow accumulation. Similar analyses of longer ice-core records show that in this decade the Greenland ice sheet exhibited typical variability at high elevations, well within the long-term natural variability. Our results indicate that a better understanding of ice-sheet mass changes will require long-term measurements of both surface elevation and snow accumulation.  相似文献   

16.
Dome A, located in the central East Antarctic ice sheet (EAIS), is the highest summit of the Antarctic ice sheet. From ice-sheet evolution modeling results, Dome A is likely to preserve over one million years of the Earth’s paleo-climatic and -environmental records, and considered an ideal deep ice core drilling site. Ice thickness and subglacial topography are critical factors for ice-sheet models to determine the timescale and location of a deep ice core. During the 21st and 24th Chinese National Antarctic Research Expedition (CHINARE 21, 2004/05; CHINARE 24, 2007/08), ground-based ice radar systems were used to a three-dimensional investigation in the central 30 km×30 km region at Dome A. The successfully obtained high resolution and accuracy data of ice thickness and subglacial topography were then interpolated into the ice thickness distribution and subglacial topography digital elevation model (DEM) with a regular grid resolution of 140.5 m×140.5 m. The results of the ice radar investigation indicate that the average ice thickness in the Dome A central 30 km×30 km region is 2233 m, with a minimal ice thickness of 1618 m and a maximal ice thickness of 3139 m at Kunlun Station. The subglacial topography is relatively sharp, with an elevation range of 949–2445 m. The typical, clear mountain glaciation morphology is likely to reflect the early evolution of the Antarctic ice sheet. Based on the ice thickness distribution and subglacial topography characteristics, the location of Kunlun Station was suggested to carry out the first high-resolution, long time-scale deep ice core drilling. However, the internal structure and basal environments at Kunlun Station still need further research to determine.  相似文献   

17.
The causes and timing of tropical glacier fluctuations during the Holocene epoch (10,000 years ago to present) are poorly understood. Yet constraining their sensitivity to changes in climate is important, as these glaciers are both sensitive indicators of climate change and serve as water reservoirs for highland regions. Studies have so far documented extra-tropical glacier fluctuations, but in the tropics, glacier-climate relationships are insufficiently understood. Here we present a (10)Be chronology for the past 11,000?years (11?kyr), using 57 moraines from the Bolivian Telata glacier (in the Cordillera Real mountain range). This chronology indicates that Telata glacier retreated irregularly. A rapid and strong melting from the maximum extent occurred from 10.8?±?0.9 to 8.5?±?0.4?kyr ago, followed by a slower retreat until the Little Ice Age, about 200 years ago. A dramatic increase in the rate of retreat occurred over the twentieth century. A glacier-climate model indicates that, relative to modern climate, annual mean temperature for the Telata glacier region was -3.3?±?0.8 °C cooler at 11?kyr ago and remained -2.1?±?0.8 °C cooler until the end of the Little Ice Age. We suggest that long-term warming of the eastern tropical Pacific and increased atmospheric temperature in response to enhanced austral summer insolation were the main drivers for the long-term Holocene retreat of glaciers in the southern tropics.  相似文献   

18.
Current ice loss from the West Antarctic Ice Sheet (WAIS) accounts for about ten per cent of observed global sea-level rise. Losses are dominated by dynamic thinning, in which forcings by oceanic or atmospheric perturbations to the ice margin lead to an accelerated thinning of ice along the coastline. Although central to improving projections of future ice-sheet contributions to global sea-level rise, the incorporation of dynamic thinning into models has been restricted by lack of knowledge of basal topography and subglacial geology so that the rate and ultimate extent of potential WAIS retreat remains difficult to quantify. Here we report the discovery of a subglacial basin under Ferrigno Ice Stream up to 1.5?kilometres deep that connects the ice-sheet interior to the Bellingshausen Sea margin, and whose existence profoundly affects ice loss. We use a suite of ice-penetrating radar, magnetic and gravity measurements to propose a rift origin for the basin in association with the wider development of the West Antarctic rift system. The Ferrigno rift, overdeepened by glacial erosion, is a conduit which fed a major palaeo-ice stream on the adjacent continental shelf during glacial maxima. The palaeo-ice stream, in turn, eroded the 'Belgica' trough, which today routes warm open-ocean water back to the ice front to reinforce dynamic thinning. We show that dynamic thinning from both the Bellingshausen and Amundsen Sea region is being steered back to the ice-sheet interior along rift basins. We conclude that rift basins that cut across the WAIS margin can rapidly transmit coastally perturbed change inland, thereby promoting ice-sheet instability.  相似文献   

19.
Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14?kilometres thick and an estimated 21,000 petagrams (1?Pg equals 10(15)?g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300?metres in West Antarctica and 700?metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.  相似文献   

20.
Eldrett JS  Harding IC  Wilson PA  Butler E  Roberts AP 《Nature》2007,446(7132):176-179
The Eocene and Oligocene epochs (approximately 55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records supported by climate modelling indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy. Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented, at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号