首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为提高某型跨声速压气机转子的总性能,基于全三维优化设计平台,采用人工神经网络与遗传算法相结合的方法,对一跨声速压气机转子进行三维叶型多目标优化设计,优化目标是在流量基本不变的基础上提高转子的压比和效率.结果表明,设计点时,与原型转子相比,优化方案1(opt1)效率提高0.81%,压比提高1.55%;优化方案2(opt2)效率提高0.36%,压比提高3.09%.同时,opt1与opt2的喘振裕度与原型转子相比,分别增加1.58%和0.89%.因此,减小50%叶高并增大95%叶高叶型的安装角,结合调整吸力面前、尾缘楔角可有效控制跨声速压气机转子叶片表面载荷分布,进而提高转子总性能.  相似文献   

2.
为了量化轴流压气机叶片几何多种类加工公差对气动性能的综合影响,采用多种类几何加工公差的叶片三维模型构造方法,在设计点工况下,对压气机级样本进行三维计算流体力学数值模拟,并对样本叶片计算结果进行不确定性量化和敏感性分析.选择效率最高和最低的两个典型叶片几何误差案例,研究几何误差对出口流场的影响.结果表明:当压气机级处于设计工作状态时,全部位置度、扭转度和轮廓度公差范围内的叶片几何加工误差对样本叶片的质量流量、总压比、等熵效率、轴向推力和转矩等气动性能参数的平均影响可以忽略;转子叶片转矩的相对变化最大范围为-2.90%~2.30%.压气机级的质量流量和总压比对转子叶片各截面的扭转度公差敏感性最强,等熵效率则由转子叶片叶中截面扭转度、轴向位置度以及叶根截面的轴、周向位置度决定.几何误差的综合作用导致两案例转子叶片的等熵效率较原型的最大相对误差分别为+0.31%和-0.46%.转子叶片出口截面的径向相对总压损失和出口熵云图分布显示,典型几何误差对叶片通道内气流的流通和增压能力均有影响.  相似文献   

3.
为了提高航空发动机高压压气机的气动性能,需要对高速压气机进行低速模化设计以开展试验研究.选取高压压气机后面级作为研究对象,给出了高压压气机低速模化设计的相似准则和模化设计流程,为低速模化设计提供了可以借鉴的准则.针对高速原型压气机设计工况点,制定模化设计目标,完成几何变换、通流设计、叶片造型及数值模拟.重点研究了叶片造型模化相似技术,在叶片造型设计上突破了几何相似的限制,通过三维积叠造型的设计方法保证了高低速压气机气动参数的相似性.研究为轴流压气机低速模化设计的叶片造型提供了可以借鉴的方法.  相似文献   

4.
针对跨声速风扇/压气机级中静子的设计来流速度都为亚声速的现状,通过数值模拟比较了不同气动负荷的4组单级风扇,认为静子来流的跨声速现象是提高跨声速风扇/压气机级气动负荷的必然结果.模拟结果还表明,当来流马赫数不超过1.33时,不采用附面层主动控制而通过已有的设计手段可以有效地控制分离区,将跨声速来流造成的静子损失控制在适当的范围.进而对跨声速静子作出了明确定义,提出了完全跨声速风扇/压气机级的概念,认为完全跨声速风扇/压气机级的设计准则与经典设计准则至少有2点不同:静子轮毂区来流马赫数可以大于1.0;静子轮毂区的扩散因子上限为0.53.  相似文献   

5.
在验证数值可靠性的基础上,利用商业软件NUMECA对跨声速压气机动叶弯曲造型并进行三维数值模拟.结果表明:叶片弯曲变形改变了型面静压分布、三维激波结构以及通道内旋涡结构.反弯曲改型设计在保证稳定工作范围和总压比的前提下绝热效率得到了提升,其提升效果随着弯高、弯角而变化,最高达1.3%.正弯曲改型设计使得转子气动性能降低,且随着弯高、弯角的增大,其性能恶化趋于严重.反弯曲设计叶顶激波后移且激波强度减弱,叶顶前缘压差的减小使得泄漏流及泄漏涡强度大大降低;相反,正弯曲设计叶顶激波前移激波强度增强,且大的叶顶前缘压差加剧了叶顶泄漏流动及泄漏涡强度.  相似文献   

6.
杨阳 《科学技术与工程》2024,24(3):1268-1274
为了分析转子叶尖射流对多级轴流压气机的扩稳作用,发展了轴流式压气机三维黏性彻体力模型,通过对ANSYS CFX 软件的二次开发,求解带动量源项和能量源项的N-S(Navier-Stokes)方程,实现了无叶片条件下的压气机全通道数值模拟。基于模型计算的Stage 35单级压气机压比特性与实验数据误差不大于0.8%,判断的失稳点流量比实验值大1.2%,对端壁边界层流动能够准确模拟。基于模型计算了无射流和有射流条件下的多级压气机特性和失稳边界,并分析了叶尖射流扩稳机理。结果表明,模型能够模拟叶尖射流对多级压气机的扩稳作用,在100%设计转速下,4.6%的设计点流量的射流流量带来了7.06%的稳定裕度增加,射流能够消除叶尖区域的堵塞流动,从而扩大了压气机的稳定工作裕度。  相似文献   

7.
基于流线曲率法发展了一种适用于跨声速压气机性能预测的高精度模型,对最小损失攻角及非设计点损失预测模型进行了修正.提出了一种非设计点损失分析方法——四象限法,结合该方法对跨声速压气机的损失构成进行了重新定义,对不同工况的损失特点开展了深入分析,在一定程度上揭示了跨声速压气机的损失分布和增长规律.采用新发展的模型对某高负荷跨声速转子进行了详细的计算,并与实验数据进行对比.结果表明,发展的性能预测模型和损失分析方法能够较为可靠地预测全流量工况下跨声速转子的总体性能与气动参数沿展向的分布,为跨声速压气机的特性预测提供了新的思路,具有较强的借鉴意义和工程实用价值.  相似文献   

8.
级环境下离心压气机扩压器叶片气动优化设计   总被引:3,自引:0,他引:3  
在级环境下采用人工神经网络和遗传算法在对设计工况下的离心压气机扩压器叶片型线进行了优化,并采用数值方法对优化前、后离心压气机级的气动性能进行了对比分析.结果表明:在设计工况下,优化后的叶片扩压器静压恢复系数提高了11.7%,总压损失系数减少了21.12%,离心压气机级绝热等熵效率提高1.64%,达到了86.01%;非设计工况下离心压气机的气动性能也有显著改善;优化后离心压气机级在设计转速下喘振裕度有所提高,阻塞裕度略有降低.  相似文献   

9.
针对S2流面求解的通流计算方法与全三维黏性求解的计算流体力学(computational fluid dynamics, CFD)方法是叶轮机械气动设计与分析的主要技术手段。该文基于一套自主开发的流线曲率法通流计算程序,建立了适用于多级高负荷轴流压气机的通流与CFD一体化优化设计方法。该方法由通流与CFD一体化气动分析方法和基于改进智能优化算法的设计优化方法构成。研究将其应用于某跨音三级压气机中,对其中的跨音动叶边界层分离流动问题进行合理定位。针对第一级动叶(R1)与第三级动叶(R3)开展优化设计,分别获得了三级压气机效率提升0.1%和0.3%的优化设计方案。研究表明,该方法能够实现通流与CFD分析方法优势互补,同时把握气动布局设计与细节流场结构特征,从而高效定位压气机气动性能与流场结构问题及其与叶型设计或气动布局的关联,指导优化设计方向。  相似文献   

10.
以高温气冷堆氦气轴流压气机叶型气动特性为研究对象,结合优化算法与现代流场模拟技术研究了氦气压气机叶型的设计特点和损失特性。数值模拟采用SST湍流模型和γ-Reθ转捩模型,考虑了氦气附面层转捩对叶型损失的影响。对比低速空气压气机叶型和CDA叶型,研究了具有低损失和宽广工作范围的氦气压气机叶片表面压力分布特点及其附面层发展特点。研究结果表明,优化叶型在保持设计工况下损失基本不变的情况,大幅度地增加了氦气叶型的低损失攻角范围,并减小了不同攻角时叶型的落后角。优化叶型在正攻角情况下,附面层转捩显著推迟,氦气压气机叶型损失得到有效控制。  相似文献   

11.
为了提高轴流压气机的串列静子在不同工况下的静压比与总压恢复系数,采用高自由度的复合弯掠三维叶片造型设计方法,对其前后排叶片进行协同双目标优化设计。设计优化研究表明:弯掠优化设计显著抑制了正攻角工况下串列静子叶片流道内的气流分离,缓解了负攻角工况下串列静子叶片缝隙通道内的气流堵塞。最后优化的弯掠叶型在正和负攻角工况下,静压比分别提升了0.99%和0.71%,总压恢复系数分别提升了0.89%和0.72%。  相似文献   

12.
为探究附面层抽吸对跨声速压气机的气动性能及其流场结构的影响,以跨声速压气机的静子叶片为研究对象,通过数值模拟计算方法对压气机静叶吸力面开设抽吸槽进行相关研究.对比原型叶栅以及各抽吸方案可以发现:吸力面抽吸对抑制上角区分离效果明显,在降低损失的同时略微提高了扩压能力;当抽吸槽开设在靠近分离涡核心附近时,对角区的抑制最佳,而叶栅整体的总压损失降低了16.68%.利用进口导叶替代动叶营造近失速工况,在后续实验研究中,可以摆脱整级试验台高成本以及恶劣工况下的危险性等不利因素.  相似文献   

13.
以某型航空发动机压气机四、五、六级动叶为研究对象,在缺乏叶片扭向设计参数的情况下,根据发动机在地面标准大气条件、设计转速下计算所得的气流参数——压力、温度和速度,应用压气机增压过程中的能量转换关系及级压缩功的表达式,并考虑到动叶受力远大于静叶受力、动叶故障率远大于静叶故障率的事实,近似计算了发动机设计转速下四、五、六级动叶的气动负荷随叶高的变化,从而找到了一种叶片气动负荷的近似计算方法,并为叶片强度校核及振动分析打下了基础。  相似文献   

14.
为研究非轴对称端壁造型对大涵道比风扇角区失速流动的改善作用,对某风扇进行了平面叶栅模化设计及非轴对称端壁优化。采用数值模拟方法,以风扇根部叶型为基础进行模化设计;在此基础上,采用两种不同的控制点分布方法对平面叶栅进行非轴对称端壁优化改型。研究结果表明:模化后的平面叶栅角区失速流动及叶片加载特点与风扇原型基本一致;采用自由曲面及类两面角曲面两种非轴造型对平面叶栅角区进行优化,叶栅总压损失系数分别降低了4.57%和5.38%;将流场改善效果较好的类两面角曲面造型应用于风扇原型角区,结果表明该造型使得风扇效率提高了0.441%,角区失速现象也得到了有效的抑制。深入的流场分析表明,类两面角曲面的非轴对称端壁造型,沿流向能有效推迟压气机平面叶栅通道涡向吸力面的发展,沿径向通过使涡结构上移减弱在端壁附近吸力面附面层和通道涡的相互作用;与此同时,对大涵道比风扇原型的角区失速流动也能起到较好控制效果。  相似文献   

15.
以轴流压气机DMU37动叶根部5%叶高典型截面叶型为研究对象,采用Fluent软件,计算分析不同冲角和进口等熵马赫数下叶栅流场损失及气动特性.结果表明:同一冲角下,进口等熵马赫数的提高增加了叶片负荷和扩压能力,同时也使出口总压损失增加,失速冲角范围变小;相同进口马赫数时,随着冲角增加,出口总压损失先减小后增大,-4°冲角时总压损失最小.同时,验证了轴流压气机平面叶栅马赫数、冲角损失特性规律具有相似性,并且,叶栅端壁区域受进口马赫数和冲角变化影响较大.  相似文献   

16.
研究压气机转子中叶片叶顶、叶根倒圆、下端壁这类难以自动抛光区域的表面粗糙度对转子气动性能的影响规律,旨在为叶片抛光加工表面粗糙度目标的制定提供指导.基于计算流体动力学(CFD)对跨音速转子rotor37进行气动计算,分析了98%阻塞流量工况不同转速下各部位表面粗糙度对转子的损失系数和出口总压的影响规律.结果表明,在设计转速下,叶片各部位的表面粗糙度增加均使转子损失增加,叶顶的表面粗糙度使出口总压升高,而叶根倒圆和下端壁表面粗糙度使出口总压降低;表面粗糙度15μm是一个转折点,大于15μm时表面粗糙度对气动性能的影响程度开始变大;下端壁表面粗糙度对性能的影响最大,在60%设计转速下,下端壁表面粗糙度使损失降低,但是在80%和100%设计转速下,则使损失增加.  相似文献   

17.
为探究附面层抽吸对跨声速压气机转子内部流动状态及气动性能的影响,利用数值方法对其进行模拟研究.针对压气机转子上端壁激波及泄漏涡等复杂流动结构带来的流动损失做附面层抽吸处理,抽吸流量为主流2%,抽吸位置在上机匣处.分别讨论3种不同抽吸方案,最终改型方案效率最高提升2.05%,压比最多提升3.34%.结果表明,在合适的机匣位置进行大流量抽吸,能够很好地改善跨声速压气机转子内部流动状态,提高转子气动性能.  相似文献   

18.
为提高叶片的服役寿命,针对压气机叶片疲劳损伤进行了数值研究。在获取叶片表面气动压力及强度分布的基础上,结合非线性连续损伤力学模型,得到叶片多级加载损伤累积方程,提出了开展结构寿命预测和损伤评估的数值计算方法。对轴流压气机叶片在典型工况转速下受离心、气动复杂载荷作用下的应力分布规律和疲劳损伤行为进行了分析。计算结果表明:叶片排气侧4%叶高处有明显的应力集中,容易发生疲劳失效;在叶片疲劳加载过程中,损伤累积速率逐渐增大,加载周期的末期易发生瞬时断裂;考虑载荷顺序对损伤累积行为的影响,和Miner线性损伤模型相比,多级加载损伤模型体现了损伤演化过程的非线性,计算结果更为准确。  相似文献   

19.
跨声速离心压气机叶尖区旋涡流动特征   总被引:4,自引:0,他引:4  
车用增压器高压比的发展趋势,使得跨声速离心压气机叶尖区流动对气动性能影响更为重要.采用三维CFD方法,研究了跨声速离心压气机叶尖区流动对性能的影响.结果表明:额定、近失速和堵塞工况的激波呈现多样性;额定和近失速工况主叶片前缘发出的泄漏涡与相邻主叶片压力面相撞分裂成两支,堵塞工况主叶片的泄漏涡出现在压力面侧;3种工况分流叶片泄漏涡与主叶片的泄漏涡均在同一通道流出叶轮;1/2主叶片弦长之后,3工况的分离旋涡与通道涡的尺度和分布特征基本相同,叶片吸力面与机匣相交的角区形成高损失核心区.对激波结构和旋涡特征的分析有助于认识叶轮内损失分布规律和产生损失的机理.  相似文献   

20.
长叶片透平级多学科多目标优化设计   总被引:1,自引:0,他引:1  
针对长叶片透平级优化问题,结合自适应多目标差分进化算法、基于3次非均匀B样条曲线的曲面造型技术及透平级气动和强度性能分析评价方法,建立了长叶片透平级多学科多目标优化设计系统,其中气动性能评估采用数值求解三维RANS方程完成,长叶片强度分析采用有限元方法完成。长叶片透平级的优化设计目标是比功率最大和最大等效应力最小,设计变量是透平级静叶和动叶型线的三维参数化控制参数。采用所建优化设计系统获得了长叶片透平级的7个多学科优化非受控解(Pareto解)。3个典型的Pareto解与参考叶型进行比较分析显示,优化后Pareto解下的气动和强度性能均优于参考叶型设计方案,从而验证了所建优化设计系统的实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号