首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
用微电解-Fenton试剂催化氧化组合工艺对Fischer-Tropsch合成废水进行预处理,研究探讨该处理过程中各种反应条件和工艺参数对处理效果的影响.结果表明:在微电解铁炭体积比1:1 ,进水pH为3.0,反应时间120 min的条件下,对F-T合成废水中CODCr的去除率达到39.2%;微电解后出水经Fenton试剂进一步氧化,在pH为3,H2O2的投加量为 30 mL/L,反应时间为 90 min时,其CODCr的去除率可达69.4%.ρ(BOD5)/ρ(CODCr)可从0.06提高到0.32,有效地提高了废水的可生化性.  相似文献   

2.
微电解-Fenton氧化法去除垃圾渗滤液中有机物   总被引:1,自引:0,他引:1  
采用Fe/C微电解和Fe/C微电解-Fenton氧化联合工艺对垃圾渗滤液进行处理,研究了废水初始pH、药剂投加量、药剂投加比例和反应时间等对处理效果的影响,获得Fe/C微电解处理垃圾渗滤液的最佳工艺条件:初始pH =3、m(Fe)/m(C)为4、ρ(Fe/C)为0.6 g/L、反应时间为60 min,处理后COD降至5 960 mg/L,COD去除率达51.8%.Fe/C微电解-Fenton氧化处理垃圾渗滤液的最佳工艺条件:在Fe/C微电解最佳条件下,H2O2投加量为11 mL/L,反应时间为100 min,出水COD为4480 mg/L,COD总去除率为63.8%.垃圾渗滤液中的腐殖酸类有机质经过Fe/C微电解或微电解-Fenton氧化处理后变成小分子产物,与Fe/C微电解相比,Fenton氧化对腐殖酸等大分子有机质有更强的氧化降解效果.  相似文献   

3.
微电解-芬顿法预处理吡虫啉农药生产废水   总被引:3,自引:0,他引:3  
吡虫啉农药生产废水是一种典型的高浓度难降解有机废水,可生化性差,需采用物化法进行预处理.采用微电解芬顿法作为吡虫啉农药生产废水的主要预处理工艺,有效地降低了废水中有机物浓度,提高了废水预处理出水的可生化性.实验结果表明,微电解最佳条件:pH 3~4,停留时间90min;芬顿法的最佳条件:微电解出水调pH 4~5,控制停留时间1h,30% H2O2按140mg/L的比例投加.最终预处理出水的COD去除率为81%,色度的去除率达90%,BOD5/COD提高到0.25以上,废水可生化性大大提高.  相似文献   

4.
铜氨制药废水除铜脱氨预处理   总被引:1,自引:0,他引:1  
研究了氟洛芬有机制药铜氨废水的除铜除氨预处理工艺.采用铁屑置换法对含铜废水进行除铜,除铜工艺的最优条件为,调节含铜废水的pH=2~3,投加3倍理论用量的铁屑,搅拌反应,反应时间为1.5 h,在反应过程中需保持反应液pH低于4,防止Fe3 大量生成重新溶解释出的铜.反应后铜浓度由712 mg/L降至9.2 mg/L,去除率为98.7%.为去除引入的铁盐,调节废水pH=5,鼓风曝气后,投加阴离子PAM,投加量为1 mg/L,混凝20 min后废水铁含量低于14mg/L.采用磷酸铵镁沉淀法对除铜后的混合废水进行除氨,除氨工艺的最优条件为,调节废水pH=9.0,MgCl2·6H2O和Na2HPO4·12H2O投加量为Mg2 :NH4 ·PO43-(摩尔比)=1:1:1,搅拌反应,反应时间20 min,反应后NH3-N浓度由991.5 mg/L降至101 mg/L,去除率为89.8%,剩余磷为6.1 mg/L.铁屑置换法与磷酸铵镁沉淀法的组合能有效去除铜氨,预处理后,废水BOD5/CODcr由0.07上升至0.34,可生化性有了很大提高,可以进入后续生物处理工艺.  相似文献   

5.
Fenton法处理高浓度树脂废水   总被引:1,自引:0,他引:1  
采用Fenton氧化法预处理树脂废水,通过正交试验和单因素试验,考察了Fe^2+用量、H2O2投加量、pH值和反应时间等因素对Fenton试剂处理效果的影响,确定了最佳工艺条件.结果表明:在最佳工艺常温下,pH=2,30%H2O2投加量为52 mL/L(分三次投加),Fe^2+/H2O2摩尔比1/12.5,反应时间2 h,此时CODCr去除率可达82%以上,处理效果较好,可应用于高浓度树脂废水的预处理.  相似文献   

6.
微电解-氧化法处理微污染水研究   总被引:2,自引:1,他引:1  
文章采用铁屑微电解-Fenton联用法对微污染水的处理进行了实验研究,探讨了反应时间、pH值及双氧水质量浓度等条件对微电解和Fenton反应阶段处理效果的影响.结果表明,当原水pH=6,单独微电解反应1 h,CODMn去除率可达到63 %.单独微电解出水再进行UV/Fenton反应,在双氧水投加量10 mg/L,反应时间为1 h,弱酸性条件下,CODMn去除率可达到80%.  相似文献   

7.
采用水解酸化—Fenton试剂组合工艺对某牛仔制衣厂洗水废水进行处理。确定了水解酸化最佳反应时间为8h,考察了硫酸亚铁投加量、双氧水投加量、反应时间及pH值对洗水废水的色度及COD去除率的影响,通过正交实验确定了Fenton试剂处理该废水的最佳操作条件为:反应时间30min、双氧水(30%)投加量4mL/L、硫酸亚铁投加量300mg/L、pH值为4左右。在最佳条件下,色度与COD去除率分别达到95%和88%以上,出水COD值为145mg/L左右,水质澄清,符合GB 8978—1996《污水综合排放标准》中的二级标准,可达标排放。  相似文献   

8.
微电解-Fenton法预处理制革废水   总被引:1,自引:0,他引:1  
采用静态实验,考察微电解-Fenton法预处理制革废水中各种工艺参数对处理效果的影响.确定最优条件:微电解进水pH值为3,反应时间为1 h,Fe和C的体积比为1∶1,铁屑的投加量为200 g;Fenton反应的H2O2的投加量为3 mL,反应时间为50 min.在此条件下,制革废水经微电解-Fenton法预处理,化学需氧量去除率能达到80%左右,出水水质得到较大改善,为后继生物处理提供必要的条件.  相似文献   

9.
采用Fenton氧化/强化混凝法对湖南某食用槟榔生产排放的废水进行预处理实验研究。实验结果表明:采用Fenton试剂,在初始pH值为5.0,H_2O_2投加量为247.5 g/L,Fe(2+)投加量为1.40g/L,反应时间为2 h的条件下,COD_(cr)去除率达到88.56%,色度去除率达到83.33%。继续采用10%的氢氧化钠对上清液进行强化混凝处理,在调节pH为9.0,反应时间为10 min的奈件下,出水的COD_(cr)可降至1980.0 mg/L,色度可降至20倍,颜色清澈,极大的消减了污染负荷,达到了良好的预处理效果。  相似文献   

10.
采用Fenton氧化/强化混凝法对湖南某食用槟榔生产排放的废水进行预处理实验研究。实验结果表明:采用Fenton试剂,在初始pH值为5.0,H_2O_2投加量为247.5 g/L,Fe~(2+)投加量为1.40g/L,反应时间为2 h的条件下,COD_(cr)去除率达到88.56%,色度去除率达到83.33%。继续采用10%的氢氧化钠对上清液进行强化混凝处理,在调节pH为9.0,反应时间为10 min的奈件下,出水的COD_(cr)可降至1980.0 mg/L,色度可降至20倍,颜色清澈,极大的消减了污染负荷,达到了良好的预处理效果。  相似文献   

11.
通过吸附、沉淀和光催化法联合处理鞣酸Pb(Ⅱ)废水,考察了各因素对COD_(Cr)的影响。结果表明:D201树脂最佳用量20 g/L;CaO最佳用量0.67 g/L;光催化反应的最佳条件为:pH为7,P25用量1.6 g/L,H_2O_2用量6 ml/L。树脂吸附反应可除去98.2%的Pb~(2+),COD_(Cr)由4500.0 mg/L降低到1154.9 mg/L;吸附处理过的废水用CaO处理,COD_(Cr)降低到495.0 mg/L;沉淀处理过的废水用光催化处理,COD_(Cr)降低到87.5 mg/L。在最优的光催化反应条件下,废水连续反应8次,仍然可以达到GB14374—93污水排放标准。D201树脂可用0.1 mol/L的盐酸和15%的NH_4Cl洗脱再生。  相似文献   

12.
以花生壳为原料,用甲醛和环氧氯丙烷为改性剂制备了甲醛和环氧氯丙烷改性花生壳粉吸附剂,并考察了其吸附Mn^2+的影响因素即吸附溶液的pH、金属离子初始质量浓度、吸附时间等.结果表明:在10 g花生壳粉中分别加入1.25 mol/L的NaOH溶液80 mL和环氧氯丙烷30 mL,置于水浴锅中于40℃搅拌反应1 h,水洗干燥后得到环氧氯丙烷改性花生壳粉,用此改性的花生壳粉吸附Mn2+的最佳条件为:pH值5.0、吸附30 min,用0.2 g环氧氯丙烷改性花生壳粉处理10.0 mg/L的Mn^2+溶液25 mL吸附率可达100%,最大吸附量不低于29 mg/g;未改性花生壳粉和甲醛改性花生壳粉对Mn^2+的吸附率仅为53%和43%,最大吸附量分别为5.96 mg/g和1.32 mg/g.  相似文献   

13.
采用溶胶-凝胶法制备纳米TiO2膜,并进行苯酚降解试验.结果表明,用溶胶-凝胶法制备TiO2膜的最佳条件为:试剂的体积配比V钛酸丁酯∶V无水乙醇:V蒸馏水:V浓盐酸=1∶4∶0.25∶0.25,涂层厚度5层,焙烧温度500℃,焙烧时间2h.在该条件下制备的TiO2膜具有较高的光催化活性.在30W紫外灯,苯酚的质量浓度为...  相似文献   

14.
Fenton试剂法处理造纸废水的应用研究   总被引:5,自引:0,他引:5  
用Fenton法对造纸废水进行处理研究,讨论了处理造纸废水的影响因素:pH值,H2O2的用量,Fe2+投入量, 搅拌时间,搅拌速度以及光照时间等对CODcr去除率的影响,得到最佳工艺条件:pH=6.00,H2O2(30%)的用量为8. 34 mL/L,FeSO4投入量为6.67 g/L,搅拌速度为280 r/min,紫外光照80 min后废水的CODCr去除率达85.3%,出水CODcr降到350 mg/L,达到国家造纸废水排放标准.  相似文献   

15.
文章以苯酚模拟废水为处理对象,采用三维电极法,考查了三维电极系统处理苯酚废水时,苯酚浓度、电流密度、电解时间、电导率、PH值对苯酚去除率、CODCr降解率的影响,实验结果表明,增大电流密度、增大溶液电导率和延长电解时间能使苯酚去除率和CODCr去除率提高;增大苯酚浓度和PH值使苯酚去除率和CODCr去除率降低。  相似文献   

16.
采用硬脂酸法制备了一种新型的Cu-Sn-TiO2三元复合光催化剂,并采用XRD研究了复合催化剂的物相,且以苯酚为目标降解物对其光催化活性进行了评价.结果表明,经500℃焙烧的Cu-Sn-TiO2催化剂的晶型为锐钛矿型,并具有较高的光催化活性,以摩尔比n(Cu):n(Sn):n(Ti)=0.25:5:100为最佳,光催化反应3 h时苯酚的降解率达97.1%.  相似文献   

17.
赵宁  周济海 《科技信息》2013,(7):458-459
利用混凝法、氧化法对印染废水进行了以达标排放为目的的实验研究。结果表明,对色度为125倍、CODCr为804.4mg/L的印染废水,当絮凝剂用量为3.000g/L,次氯酸用量为10mL/L,在反应时间为1 min,pH为6的反应条件下,可使处理后水的色度达到2倍,CODCr降为118.5mg/L,能够达到国家二级排放标准。  相似文献   

18.
对于photo-Fenton工艺处理畜产废水进行了试验,通过改变高级氧化法的各种参数得到了最佳运转条件。最佳运转条件是:当pH=5、c[Fe2 ]=10 mmol/L、c[H2O2]=100mmol/L、反应时间为80min时,采用重铬酸盐法测定的化学需氧量(CODcr)为79%,色度为70%,大肠杆菌的去除率为99.5%。污泥发生量体积比为0.075,浓度约为5.6mg/L。结果表明:去掉畜产废水中妨碍紫外线吸收的固形物质后利用photo-Fenton工艺进行处理,可替代生物学方法对畜产废水进行处理。若用太阳光代替紫外线作为光源,则将进一步降低成本。因此,该方法是一种环保工艺。  相似文献   

19.
针对高盐对微生物的抑制和生物处理效能不稳定的问题,探讨了电-Fenton法处理高盐榨菜综合废水的效能,主要考察了电-Fenton法对高盐废水CODcr的去除效果及其影响因素,并对CODcr降解规律进行了动力学分析.结果表明,以RuO2-IrO2-SnO2-TiO2/Ti四元极板为阳极,钛网极板为阴极,在电流密度为10 A/dm2,硫酸亚铁投加量为1.0 mmol/L,极板间距为15 mm,pH为5的条件下,电解120 min后,CODcr的去除率达到了76.33%.动力学分析表明,电-Fenton法对榨菜综合废水CODcr的降解符合一级反应动力学规律,当原水CODcr为4 225 mg/L时,一级反应速率常数为0.012 1 min-1.通过线性方程建立的CODcr降解的反应动力学模型具有较高的回归率(R2=99.25%),与实验结果吻合程度较高.  相似文献   

20.
以杉木木粉经苯酚液化、熔融纺丝、固化处理、二氧化碳活化后获得的木质活性炭纤维为载体,采用溶胶–凝胶法制备木质活性炭纤维负载纳米TiO2(WACFs/TiO2)光催化复合材料.研究光照时间、WACFs/TiO2催化剂用量、纳米TiO2负载量和初始甲醛质量浓度对WACFs/TiO2降解甲醛效果的影响.结果表明:随着光照时间、催化剂用量、初始甲醛质量浓度的增加,WACFs/TiO2对甲醛的降解率逐渐增加,但催化剂用量对甲醛降解率的影响相对较小;随TiO2负载量的增多,WACFs/TiO2对甲醛的降解率呈现先增加后减小的趋势.当光照时间7,h、催化剂用量0.5,g、纳米TiO2负载量29.89%、初始甲醛质量浓度8.82,mg/L时,WACFs/TiO2对甲醛的降解率达到92.33%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号