首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The importance of repairing stalled replication forks   总被引:82,自引:0,他引:82  
The bacterial SOS response to unusual levels of DNA damage has been recognized and studied for several decades. Pathways for re-establishing inactivated replication forks under normal growth conditions have received far less attention. In bacteria growing aerobically in the absence of SOS-inducing conditions, many replication forks encounter DNA damage, leading to inactivation. The pathways for fork reactivation involve the homologous recombination systems, are nonmutagenic, and integrate almost every aspect of DNA metabolism. On a frequency-of-use basis, these pathways represent the main function of bacterial DNA recombination systems, as well as the main function of a number of other enzymatic systems that are associated with replication and site-specific recombination.  相似文献   

2.
Direct role of the himA gene product in phage lambda integration   总被引:27,自引:0,他引:27  
H I Miller  H A Nash 《Nature》1981,290(5806):523-526
The integration of phage lambda into the Escherichia coli chromosome is accomplished by a site-specific recombination between two unique DNA sequences (attB on the bacterial genome and attP on the phage; reviewed in refs 2, 3) and requires proteins encoded by both the bacterium and the phage. Genetic and biochemical studies have shown that bacterial strains mutant in the himA gene, located at 38 min on the E. coli map, are defective in the activity of the host-encoded component. They are, moreover, defective for the growth of bacteriophage Mu, for precise excision of transposable antibiotic resistance determinants and for the synthesis of the lambda int gene product. We now show that the himA gene product (phimA) is not solely a regulator of genes involved in integration but is one of two host polypeptides required for integrative recombination.  相似文献   

3.
P L Hsu  A Landy 《Nature》1984,311(5988):721-726
Site-specific recombination of the bacteriophage lambda genome into and out of the host bacterial genome is postulated to involve the formation of Holliday structure intermediates by reciprocal single-strand exchanges. Synthetic analogues of the predicted recombination intermediates are resolved in vitro by the protein product of the lambda int gene. Some of the structural features and reaction conditions for this genetic recombination can now be defined.  相似文献   

4.
大肠杆菌是制药工业中的重要蛋白质药物生产菌株。然而乙酸积累、中心碳代谢负担过重等不良因素严重制约着大肠杆菌的高密度生长。利用Red同源重组技术,构建icd和ptsG双基因敲除大肠杆菌菌株,以分流碳代谢流,提高碳利用效率,最终增加菌体生物量。同时构建ppc过表达质粒,减少乙酸积累。发酵结果显示,构建的重组菌株产酸量大幅减少,pH值平均升高20%,菌体浓度增加了50%,生长特性得到了强化。  相似文献   

5.
C Rayssiguier  D S Thaler  M Radman 《Nature》1989,342(6248):396-401
The requirement for DNA sequence homology in generalized genetic recombination is greatly relaxed in bacterial mutL, mutS and mutH mutants deficient in mismatch repair. In such mutants, intergeneric recombination occurs efficiently between Escherichia coli and Salmonella typhimurium, which are approximately 20% divergent in DNA sequence. This finding has implications for speciation, for regulating recombination between diverged repeated sequences, and for hitherto difficult interspecies hybridizations.  相似文献   

6.
A M Rose  D L Baillie 《Nature》1979,281(5732):599-600
In higher organisms the rate of recombination between genetic loci is presumably responsive to selective pressure. Recently, selective pressures and mutational events that influence recombination have been reviewed. Mutational sites and chromosomal rearrangements that enhance or suppress recombination frequency in specific regions are known, but general mechanisms that enhance recombination have not yet been discovered. We describe here the isolation and characterisation of a strain of the hermaphroditic nematode, Caenorhabditis elegans, that has a recombination frequency at least threefold higher than that found in the wild type. In this strain, rec-1, the number of reciprocal recombination events between linked loci is increased. This is true for all pairs of linked loci studies so far. The high recombination strain behaves as if it carries a classical recessive mutation, although a second mutation exists which can alter the recessive behaviour of rec-1.  相似文献   

7.
J H White  K Lusnak  S Fogel 《Nature》1985,315(6017):350-352
Post-meiotic segregation of alleles, which is seen, for example, in the 5:3 distribution of alleles in the products of a single meiosis in fungi, has been thought to be due to the non-repair of heteroduplex regions formed during genetic recombination. In current models of genetic recombination, heteroduplex DNA is formed either as the primary intermediate generated by two interacting non-sister chromatids or as a short region flanking a double-stranded gap. The frequency of post-meiotic segregation differs for different alleles, and this is presumed to reflect the varying efficiencies with which different types of mismatches in the heteroduplex are repaired. To gain some insight into this process, we have now determined the nucleotide sequences of various yeast alleles with different post-meiotic segregation frequencies and compared the mismatches predicted to occur in heteroduplexes of these alleles with wild-type DNA with those repaired with varying efficiency in bacterial systems. A striking correlation is observed, with the mismatches predicted for high post-meiotic segregation frequency alleles being similar to mismatches repaired with low efficiency in bacteria. These results support the view that postmeiotic segregation frequency reflects heteroduplex repair efficiency and the contention that meiotic gene conversion is the result of the successful repair of heteroduplex mismatches.  相似文献   

8.
建立优化的转化条件,将M u转座复合物电转化到临床分离的一株铜绿假单胞菌(P seud om onasaerug inosa)PA 68中,最高转化效率达3.66×104CFU/μg DNA.通过表型筛选,得到三株鞭毛运动能力缺陷的突变子,Sourn thern杂交证实转座子为单点插入.经基因克隆、核苷酸测序研究,证明转座子分别插入到uvrD、phzF 1、zw f三个基因中,这是首次在国际上将M u转座重组技术应用到鞭毛运动相关基因的研究中.由于人工M u转座技术具有随机单点插入的优点,克服了传统转座子能在染色体上迁移的缺点,为进一步研究P.aerug inosa的鞭毛运动机理及致病性奠定基础.  相似文献   

9.
Homologous recombination is a ubiquitous process with key functions in meiotic and vegetative cells for the repair of DNA breaks. It is initiated by the formation of single-stranded DNA on which recombination proteins bind to form a nucleoprotein filament that is active in searching for homology, in the formation of joint molecules and in the exchange of DNA strands. This process contributes to genome stability but it is also potentially dangerous to cells if intermediates are formed that cannot be processed normally and thus are toxic or generate genomic rearrangements. Cells must therefore have developed strategies to survey recombination and to prevent the occurrence of such deleterious events. In Saccharomyces cerevisiae, genetic data have shown that the Srs2 helicase negatively modulates recombination, and later experiments suggested that it reverses intermediate recombination structures. Here we show that DNA strand exchange mediated in vitro by Rad51 is inhibited by Srs2, and that Srs2 disrupts Rad51 filaments formed on single-stranded DNA. These data provide an explanation for the anti-recombinogenic role of Srs2 in vivo and highlight a previously unknown mechanism for recombination control.  相似文献   

10.
细菌纤维素基材料的制备及其应用前景   总被引:1,自引:0,他引:1  
细菌纤维素(BC)是一种由醋酸菌属合成的胞外多糖,由于其具有独特的性能,因此近些年来BC正日益受到产业界的热切关注.本文介绍了2种BC基材料(BC结构改性材料与BC复合材料)的制备,此外,还介绍了BC基材料在生物医学材料与吸附材料领域的潜在开发前景.  相似文献   

11.
Homology-dependent interactions in phage lambda site-specific recombination   总被引:35,自引:0,他引:35  
P A Kitts  H A Nash 《Nature》1987,329(6137):346-348
General recombination shows a dependence on large regions of homology between the two participating segments of DNA. Many site-specific recombination systems also exhibit a dependence on homology, although in these systems the requirement is limited to a short region (less than 10 base pairs (bp]. We have used the in vitro phage lambda integration reaction to study the role of homology in this model site-specific recombination system. We find that certain non-homologous pairings which are strongly blocked for complete recombination, nevertheless make one pair of strand-exchanges to generate a joint molecule of the Holliday structure type. This result rules out recombination models in which the only homology-dependent step is synapsis (the juxtaposing of the two recombination sites). Our results also reveal a functional asymmetry in the recombination sites. We present models for bacteriophage lambda integrative recombination which accommodate these findings.  相似文献   

12.
Zha S  Guo C  Boboila C  Oksenych V  Cheng HL  Zhang Y  Wesemann DR  Yuen G  Patel H  Goff PH  Dubois RL  Alt FW 《Nature》2011,469(7329):250-254
Classical non-homologous DNA end-joining (NHEJ) is a major mammalian DNA double-strand-break (DSB) repair pathway. Deficiencies for classical NHEJ factors, such as XRCC4, abrogate lymphocyte development, owing to a strict requirement for classical NHEJ to join V(D)J recombination DSB intermediates. The XRCC4-like factor (XLF; also called NHEJ1) is mutated in certain immunodeficient human patients and has been implicated in classical NHEJ; however, XLF-deficient mice have relatively normal lymphocyte development and their lymphocytes support normal V(D)J recombination. The ataxia telangiectasia-mutated protein (ATM) detects DSBs and activates DSB responses by phosphorylating substrates including histone H2AX. However, ATM deficiency causes only modest V(D)J recombination and lymphocyte developmental defects, and H2AX deficiency does not have a measurable impact on these processes. Here we show that XLF, ATM and H2AX all have fundamental roles in processing and joining DNA ends during V(D)J recombination, but that these roles have been masked by unanticipated functional redundancies. Thus, combined deficiency of ATM and XLF nearly blocks mouse lymphocyte development due to an inability to process and join chromosomal V(D)J recombination DSB intermediates. Combined XLF and ATM deficiency also severely impairs classical NHEJ, but not alternative end-joining, during IgH class switch recombination. Redundant ATM and XLF functions in classical NHEJ are mediated by ATM kinase activity and are not required for extra-chromosomal V(D)J recombination, indicating a role for chromatin-associated ATM substrates. Correspondingly, conditional H2AX inactivation in XLF-deficient pro-B lines leads to V(D)J recombination defects associated with marked degradation of unjoined V(D)J ends, revealing that H2AX has a role in this process.  相似文献   

13.
Meiotic recombination occurs preferentially at certain regions in the genome referred to as hot spots which are important for generating genetic diversity and proper segregation of chromosomes during meiosis. Although observations concerning individual hotspots have given clues as to the mechanism of recombination initiation, the nature and causes of recombination rate variation in the genome are still little known. A rational solution is to estimate and rank recombination rates along the genome. Therefore, it is a high demand for a database that deposits and integrates those data to provide a systematical repository of genome-wide recombination rates. Homologous recombination hotspots database is a web-based database of meiotic recombination rates, which comprises enormous data and information of human, mouse, rat, D. melanogaster, C. elegans and yeast. Users can query the database in several alternative ways. The database stores various details for every sequence, such as chromosome number, hyperlinks to the respective reference, and the sequence in FASTA format.  相似文献   

14.
Filamentous phage integration requires the host recombinases XerC and XerD   总被引:19,自引:0,他引:19  
Huber KE  Waldor MK 《Nature》2002,417(6889):656-659
Many bacteriophages and animal viruses integrate their genomes into the chromosomal DNA of their hosts as a method of promoting vertical transmission. Phages that integrate in a site-specific fashion encode an integrase enzyme that catalyses recombination between the phage and host genomes. CTX phi is a filamentous bacteriophage that contains the genes encoding cholera toxin, the principal virulence factor of the diarrhoea-causing Gram-negative bacterium Vibrio cholerae. CTX phi integrates into the V. cholerae genome in a site-specific manner; however, the approximately 6.9-kilobase (kb) CTX phi genome does not encode any protein with significant homology to known recombinases. Here we report that XerC and XerD, two chromosome-encoded recombinases that ordinarily function to resolve chromosome dimers at the dif recombination site, are essential for CTX phi integration into the V. cholerae genome. The CTX phi integration site was found to overlap with the dif site of the larger of the two V. cholerae chromosomes. Examination of sequences of the integration sites of other filamentous phages indicates that the XerCD recombinases also mediate the integration of these phage genomes at dif-like sites in various bacterial species.  相似文献   

15.
16.
E Falvey  G F Hatfull  N D Grindley 《Nature》1988,332(6167):861-863
In several well-characterized site-specific recombination systems it has been shown that, for efficient recombination, the two recombining sites must have identical DNA sequences across the region between the staggered points of exchange. The precise DNA sequence of this overlap region, however, appears to be of little importance (with the exception of one position in the loxP site of bacteriophage P1 (ref. 6]. In this report we characterize a mutant recombination site for the site-specific recombination enzyme gamma delta resolvase (encoded by the gamma delta transposon), in which the dinucleotide at the crossover point is changed from AT to CT. Our results indicate that identity of the two overlap regions is not sufficient for recombination. Although resolvase binds normally to the mutant site and induces the structural deformation characteristic of the wild-type recombination site, catalysis at the crossover point (cutting and rejoining of DNA strands) is effectively limited to just one of the two strands, allowing resolvase to act as a topoisomerase but not as a recombinational enzyme.  相似文献   

17.
Ethanol is the main byproduct of anaerobic H2-producing fermentation in Klebsiella oxytoca HP1. Two moles of NAD(P)H are consumed to yield one mole of ethanol that may decrease bacterial hydrogen production. In this article the adhE gene that codes for acetaldehyde dehydrogenase was disrupted for the first time. A homologous recombination vector pTA-Str was constructed in which the adhE gene was disrupted by inserting an aminoglycoside-3'-adenyltransferase (aadA) gene. As expected, the vector includes the insertion 5′-adhE-aadA-adhE-3′. The amplified DNA fragment 5′-adhE-aadA-adhE-3′ from pTA-Str was transformed into K. oxytoca HP1 and one recombinant was obtained. PCR analysis of the resulting genomic DNA indicated the appropriate deletion and insertion. Compared with the H2-production of wild type K. oxytoca HP1, the hydrogen yield of the mutant increased by 16.07% and ethanol concentration decreased by 77.47%, suggesting that inactivation of the adhE gene in K. oxy- toca HP1 is a potential method for enhancing bacterial H2-production.  相似文献   

18.
Genetic recombination between RNA components of a multipartite plant virus   总被引:5,自引:0,他引:5  
J J Bujarski  P Kaesberg 《Nature》1986,321(6069):528-531
Genetic recombination of DNA is one of the fundamental mechanisms underlying the evolution of DNA-based organisms and results in their diversity and adaptability. The importance of the role of recombination is far less evident for the RNA-based genomes that occur in most plant viruses and in many animal viruses. RNA recombination has been shown to promote the evolutionary variation of picornaviruses, it is involved in the creation of defective interfering (DI) RNAs of positive- and negative-strand viruses and is implicated in the synthesis of the messenger RNAs of influenza virus and coronavirus. However, RNA recombination has not been found to date in viruses that infect plants. In fact, the lack of DI RNAs and the inability to demonstrate recombination in mixedly infected plants has been regarded as evidence that plants do not support recombination of viral RNAs. Here we provide the first molecular evidence for recombination of plant viral RNA. For brome mosaic virus (BMV), a plus-stranded, tripartite-genome virus of monocots, we show that a deletion in the 3' end region of a single BMV RNA genomic component can be repaired during the development of infection by recombination with the homologous region of either of the two remaining wild-type BMV RNA components. This result clearly shows that plant viruses have available powerful recombinatory mechanisms that previously were thought to exist only in animal hosts, thus they are able to adapt and diversify in a manner comparable to animal viruses. Moreover, our observation suggests an increased versatility of viruses for use as vectors in introducing new genes into plants.  相似文献   

19.
Site-specific recombination requires conserved DNA sequences specific to each system, and system-specific proteins that recognize specific DNA sequences. The site-specific recombinases seem to fall into at least two families, based on their protein structure and chemistry of strand breakage. One of these is the resolvase-invertase family, members of which seem to form a serine-phosphate linkage with DNA. Members of the other family, called the integrase family, contain a conserved tyrosine residue that forms a covalent linkage with the 3'-phosphate of DNA at the site of recombination. Structural comparison of integrases shows that these proteins share a highly conserved 40-residue motif. V-(D)-J recombination of the immunoglobulin gene requires conserved recombination signal sequences (RS) of a heptamer CACTGTG and a T-rich nonamer GGTTTTTGT, which are separated by a spacer sequence of either 12 or 23 bases We have recently purified, almost to homogeneity, a protein that specifically binds to the immunoglobulin J kappa RS containing the 23-base-pair spacer sequence. By synthesizing probes on the basis of partial amino-acid sequences of the purified protein, we have now isolated and characterized the complementary DNA of this protein. The amino-acid sequence deduced from the cDNA sequence reveals that the J kappa RS-binding protein has a sequence similar to the 40-residue motif of integrases of phages, bacteria and yeast, indicating that this protein could be involved in V-(D)-J recombination as a recombinase.  相似文献   

20.
DNA helicase Srs2 disrupts the Rad51 presynaptic filament   总被引:48,自引:0,他引:48  
Mutations in the Saccharomyces cerevisiae gene SRS2 result in the yeast's sensitivity to genotoxic agents, failure to recover or adapt from DNA damage checkpoint-mediated cell cycle arrest, slow growth, chromosome loss, and hyper-recombination. Furthermore, double mutant strains, with mutations in DNA helicase genes SRS2 and SGS1, show low viability that can be overcome by inactivating recombination, implying that untimely recombination is the cause of growth impairment. Here we clarify the role of SRS2 in recombination modulation by purifying its encoded product and examining its interactions with the Rad51 recombinase. Srs2 has a robust ATPase activity that is dependent on single-stranded DNA (ssDNA) and binds Rad51, but the addition of a catalytic quantity of Srs2 to Rad51-mediated recombination reactions causes severe inhibition of these reactions. We show that Srs2 acts by dislodging Rad51 from ssDNA. Thus, the attenuation of recombination efficiency by Srs2 stems primarily from its ability to dismantle the Rad51 presynaptic filament efficiently. Our findings have implications for the basis of Bloom's and Werner's syndromes, which are caused by mutations in DNA helicases and are characterized by increased frequencies of recombination and a predisposition to cancers and accelerated ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号