首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用固相烧结法,在惰性气氛下制备了橄榄石型Li1.05Fe(PO4)1-x(GeO3)x/C (x=0.021,0.054,0.086)复合材料. 采用X粉末衍射仪、充放电循环、循环伏安和交流阻抗等现代测试手段表征制备的样品的电化学性能. 实验结果表明:掺锗可显著改善LiFePO4的大电流放电性能. 理论组成为Li1.05Fe(PO4)0.95(GeO3)0.054/C的样品的电化学性能最佳.  相似文献   

2.
正极材料LiFePO4的电化学性能的改进   总被引:9,自引:1,他引:9  
采用固相反应法合成了LiFePO4正极材料,在20mA/g的电流密度下进行恒电流充放电,比容量可以达到135mAh/g,为了改进LiFePO4的性能,提高其高倍率性能,尝试了两种途径并合成出Li(Fe0.8Mn0.2)PO4和LiFePO4/C。低倍率充放电实验得出的两个样品的比容量分别可达到145mAh/g和144mAh/g,而且表现出了良好的循环性能和平坦的电压平台,以上两种方法制备出的材料均具有较好的高倍率性能。  相似文献   

3.
采用溶胶-凝胶的方法低温制备石榴石结构的固体电解质Li5La3Ta2O12,并用其包覆Li Mn2O4来改善材料的电化学性能。通过XRD,SEM和TEM等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安、交流阻抗等测试分析材料的电化学性能。研究结果表明:Li5La3Ta2O12包覆的Li Mn2O4材料与未包覆的材料相比,其电化学性能得到明显改善,经过150次循环后包覆材料的放电比容量保持率为92%,在高倍率10C(C为倍率)下包覆材料放电比容量为61.2 m A·h/g,而未包覆材料放电比容量仅为40.7 m A·h/g;包覆Li5La3Ta2O12后,Li Mn2O4的阻抗明显减小,大幅度提高了其循环性能和倍率性能。  相似文献   

4.
以硝酸锂、磷酸二氢铵、硝酸铁和钼酸铵为原料,采用液相法合成Li Fe_(0.99)Mo_(0.01)PO_4/C复合正极材料。使用X射线衍射(XRD)、充放电等测试技术研究了材料的结构和倍率充放电性能。结果表明,Mo掺杂并未影响Li Fe PO_4/C样品的结构,反而缩短了Li~+一维扩散路径。Li Fe_(0.99)Mo_(0.01)PO_4/C在0.2C倍率下的首次放电比容量达到128 m Ah·g~(-1)。  相似文献   

5.
采用一步高温固相合成法制备橄榄石型锂离子电池正极材料LixFe(1-y)MoyPO4/C,着重研究了不同锂铁比和铁位钼元素掺杂对材料的充放电性能的影响.结果表明:当Li:Fe=1.03:1时,磷酸铁锂的放电比容量和充放电循环性能最佳,首次放电比容量最高为100.8mAh/g;在富锂基础上,Mo掺杂的浓度为Li1.033Mo0.01Fe0.97PO4/C时,材料表现出的电化学性能最好,所能达到的最大比容量为144.8mAh/g.  相似文献   

6.
以九水合硝酸铁(Fe(NO3)3·9H2O)和二水合磷酸二氢钠(NaH2PO4·2H2O)为原料,采用反加沉淀法制备FePO4·2H2O前驱体。将FePO4·2H2O,Li2CO3和葡萄糖混合均匀后经高温固相烧结得到LiFePO4/C锂离子正极材料。考察前驱体反应温度、溶液的pH和滴加速度对FePO4·2H2O颗粒形貌、粒径以及LiFePO4的电化学性能的影响。采用扫描电镜(SEM)和激光粒度分析仪(LPSA)对样品的形貌和粒径进行表征。实验结果表明:FePO4·2H2O颗粒的粒径和分散性影响LiFePO4/C锂离子正极材料的电化学性能,粒径较小且均匀分散的前驱体制得的LiFePO4的电化学性能较好。优化条件下制得的前驱体颗粒为片状,平均粒径为1.08μm。相应的LiFePO4在0.1C充放电倍率下的首轮充电容量为159.3 mA·h/g,放电容量为159.0 mA·h/g,首次充放电效率为99.8%。材料表现出良好的循环倍率性能和结构稳定性。  相似文献   

7.
采用高温固相反应法在氩气气氛下合成锂离子电池正极材料Li2FeSiO4、Li2FeSiO4/C和Li2Fe0.9Mn0.1SiO4/C,并采用X线衍射、扫描电镜和电化学方法研究材料的结构与性能.研究结果表明:改性后的Li2FeSiO4/C和Li2Fe0.9Mn0.1SiO4/C材料与Li2FeSiO4具有相同的晶体结构,锰离子掺杂和表面碳包覆有效地提高了材料的比容量和循环性能.以C/16倍率充放电,Li2FeSiO4/C的首次放电容量为112mA·h/g,Li2Fe0.9Mn0.1SiO4/C材料首次放电容量达122 mA·h/g,充放电循环30次后容量衰减仅为9%.  相似文献   

8.
在氯化胆碱/三乙醇胺低共熔溶剂中制备钠离子电池负极材料NaTi2(PO4)3/C,并用X射线衍射、扫描电镜、循环伏安、交流阻抗和恒电流充放电技术研究反应温度对所得NaTi2(PO4)3/C的结构、形貌以及电化学性能的影响.结果表明:不同反应温度制备的材料均是单相介孔NaTi2(PO4)3/C,合成材料的放电比容量随着反应温度的增大先增大后减小.其中140℃合成的NaTi2(PO4)3/C在10 C倍率下循环500圈后放电比容量为116 mAh/g,具有较好的倍率性能和循环稳定性.  相似文献   

9.
采用溶胶凝胶方法合成Li[Li0.2Mn0.54Ni0.13Co0.13]O2富锂正极材料,通过化学沉积技术在Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒表面沉积La F3颗粒.利用X-射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安及交流阻抗测试系统研究了La F3包覆对材料电化学性能的影响.合成的材料具有α-Na Fe O2层状结构且La F3颗粒均匀包覆在颗粒表面,表面修饰La F3后的样品表现出更高的比容量和更好的倍率性能,电化学性能测试表明La F3表面修饰层有助于缓解电解液中HF对活性材料的腐蚀,降低电荷跃迁电阻(Rct),增强锂离子的扩散能力.  相似文献   

10.
磷铁为原料合成电池正极材料磷酸铁锂的研究   总被引:1,自引:0,他引:1  
从资源的综合利用出发,将磷铁通过物理、化学处理合成Fe PO4,以Li2CO3、葡萄糖、合成的Fe PO4为原料,通过固相法制得Li Fe PO4。用X衍射分析、扫描电镜能谱分别对其结构、表面形貌、各元素含量进行分析;在0.1C下首次充电容量为158.3 m Ah/g,放电容量为137.7 m Ah/g,50次充放电循环后容量为88.5 m Ah/g,与同等条件下利用市售某公司生产的Fe PO4制备的Li Fe PO4相比,首次放电容量比市售某公司的高出16%。  相似文献   

11.
Li3V2(PO4)3是当今较新型的锂离子电池正极材料之一,其显著优点之一是在大容量动力锂离子电池研发方面拥有巨大的应用潜力.研究表明,Li3V2(PO4)3跟LiCoO2的放电平台和能量密度相同,但是其安全性以及热稳定性要远远优于LiCoO2,同样强于LiMn2O4和LiFePO4.较之LiFePO4,单斜晶系的Li3V2(PO4)3化合物拥有更高的Li+离子扩散系数以及更高的放电电压(3.6V、4.1V和4.6V)和能量密度(用碳包覆后为2 330 mWh/cm3).因此,对近十多年来单斜晶Li3V2(PO4)3的主要合成工艺,碳包覆及掺杂改性等方面的研究进行综述,并对单斜晶Li3V2(PO4)3正极材料的晶体结构、充放电机理、性能特点分别进行了介绍.  相似文献   

12.
Li3V2(PO4)3掺镍的性能研究   总被引:2,自引:0,他引:2  
摘要:采用溶胶凝胶法制备了锂离子电池正极材料Li3+xNixV2-x(PO4)3(x=0、0.05、0.10、0.20).通过XRD和SEM图谱对材料的结构及表面形貌进行了表征,结果表明Li3+xNixV2-x(PO4)3与Li3V2(PO4)3具有相同的结构,均属单斜晶系P2 1/n,掺杂后样品的颗粒随着Ni含量的增加而变大.循环伏安和充放电测试表明,随着Ni含量的增加,Li3+xNixV2-x(PO4)3的充放电容量降低,循环性能也变差,说明掺杂后样品的电化学性能变差.  相似文献   

13.
采用固相烧结法,合成了一系列橄榄石型LiFe1-xNixPO4/C (x = 0, 0.02, 0.04, 0.06)复合正极材料. 通过XRD、充放电和TEM等现代手段,研究了样品的物相结构、电化学性能等. 充放电测试表明,LiFe0.98Ni0.02PO4/C以0.1 C倍率电流放电时,首次放电容量分别为142.0 mAh/g. 样品还表现出很好的倍率性能,当以2 C的倍率放电时,放电容量达到了121.3 mAh/g. 结果表明少量Ni离子掺杂可改善LiFePO4的电化学性能. 透射电镜表明LiFe0.98Ni0.02PO4/C样品表面包覆了一层大约2.8 nm厚的碳层.  相似文献   

14.
采用高温固相法,以环氧树脂为还原剂合成锂离子电池正极材料Li3V2(PO4)3.通过X射线衍射分析和扫描电子显微镜对样品的晶体结构和微观形貌进行表征,并用恒电流充放电和循环伏安实验研究材料的电化学性能.结果表明所制备的Li3V2(PO4)3为结晶完善的单斜结构,颗粒分布均匀且粒径较小,0.2C时在3.0V~4.3V电压范围的首次放电比容量为126.9mAh/g,30次循环后的比容量为126.0mAh/g,容量保持率达到99.29%.  相似文献   

15.
采用溶胶凝胶、喷雾干燥、碳热还原法合成了球形Li3V2 (PO4)3材料. 与金属锂配对组成半电池时,Li3V2 (PO4)3在4 V和2 V附近都有明显的充放电电压平台,分别对应于V4+/V3+和V3+/V2+电对. 同时以Li3V2 (PO4)3作为正负极材料,组装成2 V级全钒锂离子电池. 对该电池在1.5~3.0 V范围内进行充放电测试,结果表明,该全钒锂离子电池具有优良的电化学性能. 全钒锂离子电池可能成为磷酸钒锂材料应用的新领域.  相似文献   

16.
以LiOH,(NH4)2Fe(SO4)2和NH4H2PO4为原料,抗坏血酸为添加剂通过水热法制备出了{010}晶面择优生长的LiFePO4纳米片,在此基础上以MnSO4为锰源,制备了锰掺杂磷酸铁锂复合材料LiFe1-xMnxPO4/C(x=3%、5%、7%),并研究了不同Mn2+掺杂量对LiFePO4的晶体结构和充放电、交流阻抗(EIS)等电化学性能的影响.XRD、SEM和EDS测试结果表明:Mn2+成功掺入到了LiFePO4晶格中,掺杂后的材料仍是具有橄榄石结构的纳米片,且具有更小的颗粒尺寸,但是{010}晶面的择优情况在一定程度上被抑制了.恒流充放电测试中,在0.1 C倍率下,材料Li Fe0.95Mn0.05PO4/C的首次放电比容量达到了165.26 m A·h g-1,表现出了良好的电化学性能.交流阻抗测试结果表明Mn2+的掺杂降低了电荷迁移电阻,提高了材料的电子导电率.  相似文献   

17.
采用一步碳热还原法,以一种有机碳源为碳前驱体合成了单斜晶系的Li3V2(PO4)3/C复合材料. 主要研究了合成温度对材料性能的影响. 结果表明: 750~850 ℃时可以获得纯相的正极材料Li3V2(PO4)3;同时首次放电容量达到161 mAh/g;经过50次循环后,750 ℃下的容量保持率仍为83%,表明材料具有良好的循环稳定性能.  相似文献   

18.
低温熔盐法合成球形LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2研究   总被引:1,自引:1,他引:0  
采用低温熔盐法合成了锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2,并就低温熔盐0.62xLi NO3-0.38xLi OH-(1-x)CH3COOLi.2 H2O的具体比例、焙烧温度和焙烧时间对材料的影响进行了对比研究.XRD结果表明以x=0.6的低温共熔盐,经3阶段温度烧结(200℃,3 h;600℃,制备的样品的α-NaFeO2层状结构发育的较为完备.SEM扫描显示材料是由许多片状晶体构成的球形颗粒.材料在2.8~4.3 V范围内充放电,倍率为0.2 C时,首次放电比容量为173.6 mA.h.g-1,循环20次后容量保留97.4%;倍率为1 C时,首放126.0 mA.h.g-1,循环20次后容量保留94.1%.  相似文献   

19.
基于第一性原理计算,研究Gd掺杂的Li_4Ti_5O_(12)锂离子电池负极材料的电化学特性.Gd原子替代16d位的原子形成p型或n型的Li_4Ti_5O_(12),引入的空穴和电子有效提高Li_4Ti_5O_(12)材料的电导率,同时Gd的引入有效增大Li_4Ti_5O_(12)晶胞的晶格常数,从而加宽了Li离子在体系内的扩散通道,有利于Li离子的嵌入和脱出.作为一种零应变材料,Gd的掺杂有效提高Li_4Ti_5O_(12)锂离子电池负极材料的大倍率电流充放电性能、电池的充放电比容量以及材料循环性能的稳定性.  相似文献   

20.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号