首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
采用横摆力矩优化分配方法的车辆稳定性控制系统   总被引:1,自引:0,他引:1  
为提高车辆的操纵稳定性,设计了采用横摆力矩优化分配方法的车辆稳定性控制系统。控制系统的上层采用基于最优理论的横摆力矩控制器,该控制器根据校正横摆力矩来计算目标控制车轮的参考滑移率;下层是PID控制器,它跟踪上层控制器的参考滑移率,对目标车轮施加制动力矩从而使车辆稳定。采用八自由度非线性车辆模型在不同工况下进行仿真,结果表明所设计的控制系统能够有效地改善车辆的操纵稳定性。  相似文献   

2.
为了研究在复杂路况下高速行驶汽车能稳定制动的控制策略,基于防抱死制动系统(ABS)滑移率非线性动力学模型,以滑移率误差及其变化率综合最优为控制目标,利用极小值原理推导出制动时最优滑移率的解析解,进而利用制动减速度、制动车速、车轮角速度等反馈信号,在无需复杂路况附着系数信息的前提下,计算制动控制扭矩,建立ABS滑移率最优跟踪控制方法.利用Matlab/Simulink软件,对不同复杂行驶路况下目标滑移率的最优跟踪控制效果进行了仿真验证,发现实际滑移率均能在任意规定的时刻与目标滑移率同步;而同步过程的滑移率误差仅取决于滑移率误差权值与误差变化率权值的比值和制动初始时刻的滑移率误差.所建立的控制方法能保证在复杂路况行驶的任意时刻较为快速、精准、稳定地完成最优制动控制.  相似文献   

3.
提出了一种无压力闭环的差动制动实现车道偏离辅助的控制方法.根据车辆和驾驶员参考模型确定纠正车道偏离所需的目标横摆角速度.采用滑模算法设计横摆角速度跟踪控制器,确定附加横摆力矩.基于纵向滑移率均衡设计车轮制动压力调节策略,限制车轮最大滑移率,以提高车辆横向稳定性.设计模糊控制器对压力建立过程进行伺服控制.在Carsim/Labview-RT联合仿真平台上对提出的方法进行硬件在环仿真试验,试验结果表明,所提出方法能有效避免车辆偏离车道,鲁棒性强,且车辆横向稳定性好.  相似文献   

4.
为提高分布式驱动电动汽车转向稳定性,解决传统神经网络控制算法收敛速度慢、易陷入局部最优解的问题,提出一种利用粒子群算法优化神经网络的比例-积分-微分(PID)转向稳定控制器,利用横摆力矩和滑移率调整力矩实现横摆角速度和各轮滑移率的控制。在此基础上研究了一种针对转向工况的最优力矩分配算法,通过模糊控制算法对驱动力矩进行修正得到驱动修正力矩,将其与横摆力矩和滑移率调整力矩一起作为二次规划问题进行最优分配,得到各轮最佳驱动力矩。基于联合仿真平台进行了双移线和蛇形等典型转向工况下的性能对比测试。结果表明:文中提出的算法能在保持车辆良好动力性同时维持稳定性,稳定控制器能将蛇形工况打滑现象降低36.4%,最优力矩分配算法能将双移线工况的稳定性提高31.2%。  相似文献   

5.
车辆电子稳定系统能有效提高车辆在极限工况下的方向稳定性.针对传统直接横摆力矩控制(DYC)没有考虑轮胎附着力极限的局限,提出一种基于轮胎动力动态估计(TDE)算法的新型车辆电子稳定控制系统(ESP),在此基础上,通过主动前轮转向(AFS)协同控制,最大化利用车轮附着力.采用多元回归统计算法设计TDE控制器,采用基于统计数据的多项式拟合获得车轮附着力边界极限和最优动态滑移率上限值;采用模糊逻辑算法设计AFS控制器,补偿因附着力达到极限引起的横摆力矩不足.仿真结果表明,通过与AFS的协同控制,新型ESP能够在改善车辆的方向稳定性的同时,大幅降低车轮制动控制力,减少对车辆纵向速度的影响.  相似文献   

6.
极限工况下,车辆纵向侧向运动存在严重的耦合,传统的纵向或侧向主动安全控制技术难以保证车辆的操纵性能。基于复合滑移LuGre轮胎模型,提出了一种车辆横纵耦合协同优化控制器。建立了车辆侧向动力学模型,它能够反映出轮胎滑移率和侧偏角耦合特性对汽车侧向力的影响。然后,在预测控制框架下,设计车辆横纵耦合协同优化控制器,跟踪期望的横摆角速度和侧向速度,抑制滑移率,保证低附着路面下的车辆操纵稳定性。通过CarSim和MATLAB/Simulink的联合仿真,与基于纯侧偏轮胎模型的控制器控制性能进行对比,结果表明:所提出的控制器能够通过更少的输出扭矩更好地跟踪期望横摆角速度,抑制侧向速度,降低滑移率。  相似文献   

7.
针对汽车高速紧急换道避障系统对快速、精确和稳定的车轮滑移率跟踪控制的需求,基于离散滑模变结构控制方法,设计了对系统不确定性具有强鲁棒性特征的车轮滑移率离散积分滑模跟踪控制器,并利用一步延迟估计方法在线估计和补偿系统不确定性,从而抑制了抖振现象.同时,利用Elman神经网络的时间序列预测能力构建了车轮目标滑移率预测模型,用于预估车轮滑移率离散积分滑模跟踪控制器包含的下一个采样时刻车轮目标滑移率,并通过粒子群优化算法实时修正车轮目标滑移率预测模型的未知权重来提高其预估精度.最后,对提出的车轮滑移率离散积分滑模跟踪控制器的可行性和有效性进行仿真验证.  相似文献   

8.
汽车防抱死制动系统的滑模变结构控制器设计   总被引:1,自引:0,他引:1  
针对汽车防抱死系统中存在的高度非线性问题, 以汽车当前的滑移率和当前路况下的最优滑移率之间的偏差作为控制变量, 设计了滑模变结构控制器。在对汽车的驱动轮进行建模的基础上, 设计了滑模变结构控制器, 并对滑模控制器中存在的抖动问题进行了处理, 有效减小了因滑模变结构控制算法中抖动问题所带来的影响。同时将该滑模变结构控制器应用于实车仿真软件veDYNA中进行了硬件环仿真实验。仿真结果表明, 该控制器可有效防止汽车轮胎抱死。  相似文献   

9.
针对电动汽车混合制动,根据车辆纵向动力学模型,建立包括制动监视器、滑移率调节器以及力矩分配器的电动汽车混合制动自适应控制系统。制动监视器实时检测车辆状态,并在滑移率突变情况下触发制动综合控制系统。滑移率调节器在充分考虑轮胎-路面非线性接触特性的基础上,自适应计算车辆当前所需的最优制动力矩,并通过动态设置初值,解决制动控制系统触发过程中存在的制动力矩不连续问题。力矩分配器则根据电机制动及摩擦制动执行器特性对车轮制动力矩进行分配。使用MATLAB/Simulink和Car Sim进行联合仿真,结果表明,该方法有效地使滑移率确定在期望值,制动力矩输出连续,提高了电动汽混合制动的性能。  相似文献   

10.
模糊逻辑在车辆稳定性控制系统中的应用   总被引:2,自引:0,他引:2  
探讨了车辆在高速转向的极限运动工况下,利用施加于各车轮不同纵向力产生的辅助横摆力矩来提高车辆动力学稳定性的基本原理.推导了七自由度整车动力学模型,建立了车辆质心侧偏角观测器,并且考虑到车辆参数和运行工况的复杂多变,设计基于模糊控制逻辑的车辆稳定性控制策略,通过控制横摆角速度和质心侧偏角可使车辆对象输出跟踪理想参考模型的输出,用Matlah/Simulink建立车辆仿真模型,对所设计的控制算法进行了数字仿真,最后利用基于dSPACE的硬件在环仿真技术,对设计控制器的性能进行了实验验证.结果表明:所设计的模糊控制器能够显著改善车辆的操纵稳定性,特别是在低附着系数路面工况下.  相似文献   

11.
提出了一种基于蚁群算法优化PID参数的控制策略,并应用于电动轮汽车的牵引力控制.文中提出了一种易于工程应用的方法来实时估计车辆的状态参数,设计模糊控制器计算出最佳滑转率,将ACO应用到牵引力PID控制器中从而实现对车轮转矩的调节,并在搭建的电动轮汽车中进行实车测试.结果表明,所制定的控制策略可以满足要求,抑制了车轮的过度滑转.  相似文献   

12.
为了准确估计不同路况下的路面附着系数,提高汽车行驶的安全性与稳定性,提出了一种在制动工况下基于前后轮轮速和制动力矩估计路面附着系数的方法。首先,考虑汽车前后轴荷转移,在Matlab/Simulink软件中完成建模操作,创建关于双轮车辆制动的动力学模型;其次,将控制目标确定为汽车前轮以及后轮的理想和实际滑移率,建立理想制动力矩滑模控制器,对于汽车滑模控制器存在的抖振现象,通过积分切换面对其进行处理;最后,以前后轮轮速和制动力矩作为输入进行扩张状态观测器的设计,利用这一观测器观测路面附着系数相关值。结果表明,各种路况中的路面附着系数都可以通过上述手段进行准确估计,扩张状态观测器能够抵抗外界干扰,鲁棒性强。将扩张状态观测器用于路面附着系数识别的良好结果可为汽车稳定性控制系统的设计提供参考。  相似文献   

13.
针对变化速度下车辆轨迹跟踪精度以及实时性差的问题,提出一种基于模型预测控制的横纵耦合控制方法。在三自由度车辆动力学模型中,将车轮驱动力与前轮转角作为控制量,以单控制器形式实现车辆横纵向运动的综合控制,并且在考虑耦合特性的基础上,设计目标函数与可变权重系数,求解最优横纵向控制量。并且基于五次多项式理论,设计一种变速双移线轨迹以验证控制器综合轨迹跟踪能力。实验结果表明,该控制器能有效跟踪变化车速并且保持高轨迹跟踪精度与良好的实时性。  相似文献   

14.
为了解决电动汽车在加速和制动过程中容易发生滑移和抖动、不能满足稳定性和舒适性的要求,提出了一种基于主从式非线性模型预测(nonlinear model prediction,NMP)直接转矩控制(direct torque controt,DTC)的电动汽车鲁棒控制策略。采用双电机-单控制器主从式驱动模型,基于模糊逻辑控制器,在线确定权重因子的精确值,生成优化电动汽车驱动决策的最优切换状态,保证电机速度的精确跟踪。结合NMP-DTC电机控制方法,设计了一种模糊逻辑ASR/ABS控制器,以角加速度变化和滑移率变化为输入,以补偿转矩为输出变量,根据道路特性的变化提供补偿转矩,保证电动汽车行驶在最佳滑移率范围内,提高行驶的稳定性。基于MATLAB/Simulink进行变负载转矩电机跟踪和汽车纵向稳定性仿真,与参考速度进行对比分析。结果表明,所提出的主从式NMP-DTC的电动汽车ASR/ABS控制,在变负载下不仅电机跟踪轨迹误差降低,而且可保证在加速和制动过程中车辆的纵向稳定性控制。  相似文献   

15.
汽车ESP系统模型和模糊控制仿真   总被引:2,自引:1,他引:1  
汽车电子稳定系统(electronic stability program, ESP)是行驶车辆的一种主动安全系统。它综合了制动防抱死系统,驱动力控制系统和横摆力矩控制系统使行驶车辆的安全性得到很大地提高。建立了七自由度整车模型、magic formula 轮胎模型以及车辆参考模型,采用车辆质心侧偏角的状态差异法,应用模糊控制理论设计了质心侧偏角反馈控制器,将建立的模糊控制器模型和汽车动力学模型组合起来,并通过前轮转角阶跃输入和正弦输入,在常见的易于失稳的湿滑路面上对典型工况进行仿真。结果表明:所设计的控制器可以很好地控制汽车的横摆角速度和质心侧偏角,提高了车辆的稳定性。  相似文献   

16.
首先分析了串联式混合动力履带车辆耦合机构转矩与转速的输出特性及其对车辆直线行驶稳定性的影响,并利用MATLAB/Simulink仿真平台建立了整车动力学模型,其中考虑了履带的滑移率对附着系数的影响,其次为了提高车辆的直驶稳定性设计了相应的控制策略,即通过检测两侧车速的变化来计算两电机输出转矩的补偿量,并针对PI控制器参数适应性差的问题,通过神经网络自学习的功能实时优化PI控制器的控制参数.最后利用Simulink模型进行仿真,结果表明,神经网络PI控制能够保证车辆的直驶偏移量控制在0.5%左右,满足国家标准中最大直驶偏移量为1%的要求.  相似文献   

17.
基于Simulink的四轮转向汽车神经网络控制策略仿真   总被引:1,自引:0,他引:1  
针对汽车小转角时质心侧偏角为零,高速大转角时前轴抗侧滑的控制目标,提出一种四轮转向汽车控制策略.在Simulink环境下建立包含轮胎非线性和计及侧倾的三自由度四轮转向汽车模型,运用双隐含层BP神经网络训练得到四轮转向控制器.仿真结果表明,神经网络控制器可有效控制高速时汽车前轴滑动的趋势,并在低速到高速时使汽车质心侧偏角基本为零,控制误差低于比例转角控制策略和横摆角速度反馈控制策略.同时高速时横摆角速度响应与前轮转向汽车接近,汽车的侧向加速度和车身侧倾角稳态值比前轮转向有所降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号