首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
提高相位激光测距精确度的研究   总被引:5,自引:0,他引:5  
提出了提高相位激光测距测量精度的方法,给出了用多个辅助频率进行相位激光测距时的精度公式,解决了单一频率测量的矛盾,扩大了测量范围,达到了测距时高精度、大范围的工程应用要求。  相似文献   

2.
相位法激光测距系统   总被引:2,自引:0,他引:2  
为了提高测量精度,论述了相位法激光测距的原理和提高测量精度的方法.着重对频率产生电路、差频测相和数字鉴相电路进行了比较深入的分析与讨论.从理论上论证了差频测相的原理,举例说明了数字鉴相对测量精度的影响.最后针对频率漂移、相位测量等原因引起的测量误差,提出了相应的解决措施,提高了系统的测量精度和稳定性.  相似文献   

3.
文章简述了相位激光测距技术的原理,就激光测距研究中关键技术研究状况做了详细阐述.介绍了相位式激光测距原理及关键技术发展,并就影响测量精度的因素做了简单介绍.  相似文献   

4.
输电线路覆冰严重危害着输电线路地安全稳定运行。为了便捷、快速、高精度地对输电线路覆冰状况进行监测,提出了将激光测距技术和无人机技术相结合,研究了基于单频测尺的相位式激光测距无人机的输电线路覆冰厚度的测量方法。首先,研究了基于单频测尺的相位式激光测距的基本原理,提高了激光测距的精度和测量速度。然后,重点研究了基于激光测距测量覆冰厚度的基本原理,推导了激光测量距离与覆冰厚度之间的计算方法。接着,研制了基于单频测尺的相位式激光测距无人机测量输电线路覆冰厚度的测量系统,根据测量精度对主要部件和参数进行选型。最后,分别在人工气候室和现场实际进行了输电导线覆冰测量,验证了基于单频测尺的相位式激光测距无人机对输电线路覆冰厚度地实际测量有效性,并进行了误差分析。  相似文献   

5.
基于频率调制二元编码光栅相位测量剖面术   总被引:1,自引:0,他引:1  
分析传统的频率调制正弦光栅用于3步相移相位测量剖面术时,系统非线性对测量精度的影响,提出采用二元频率调制光栅,提高3步相移相位测量剖面术计算绝对相位测量精度的方法.完成了分别采用传统正弦频率调制光栅投影和基于Floyd-Steinberg二元编码频率调制光栅投影的相移剖面术的绝对相位计算结果对比.结果表明,采用正弦频率调制光栅模板的3步相移算法对系统的非线性敏感,而二元编码频率调制光栅模板既保持了利用单组条纹投影就可计算条纹绝对相位的优点,又不受系统非线性的影响,大大提高了基于频率调制光栅的相移剖面术的测量精度.计算机模拟和实验验证了所提方法的有效性.  相似文献   

6.
直接数字频率合成技术在相位式激光测距中扮演着重要的角色,特别在多尺测尺时作为理想的频率源来实现频率精调,是传统信号发生器无法比及得,本文重点介绍DDS芯片AD9954在激光测距中的应用和设计。  相似文献   

7.
针对目前卫星导航系统中原子频率标准的高精度频率测量需求,提出一种全数字差拍频率测量方法,对被测标准频率信号直接进行数字采样,以解决模拟差拍频率测量方法受温度影响大的问题。利用最大似然估计实现相位估计,采用相位差分完成频率测量,并引入小波阈值去噪处理进一步提高相位估计精度。研究结果表明:当测量间隔为1 s、估计点数为3 000时的频率测量精度为2.0×10-14/s,经过小波阈值去噪处理后频率测量精度达到10-15/s量级。  相似文献   

8.
介绍了基于相位法的测距方法,即方波与方波相关法。提出了测量方案和算法。并用Matlab的Simulink工具对测距原理进行了仿真,还对测距精度进行了分析。从理论上证明了此种相位法测距的可行性,为实际激光测距系统的研制奠定了基础。  相似文献   

9.
提出了一种静止、可视两目标之间基于载波相位高精度测距技术:第一步,借助GPS、伪随机码相位自主测距或超宽带等辅助测距手段得到一个距离粗测值和测量精度;第二步,基于已有距离粗测值和测量精度选择载波频率对,消除基于载波相位测距时引入的整周模糊度问题,然后基于载波相位双-单边测距技术,并借助伪码相位消除两目标上面载波相位观测时间差,得到一个精度更高的距离测量值;基于新得到的距离测量值和测量精度,重复第二步过程,渐进提高测距精度直到满足需要的精度为止。理论分析和现有工程技术实现表明,最终测距精度可达微米级。  相似文献   

10.
在850 GHz频率附近,通过实验验证了亚毫米波矢量场形测量平台测量原理的可行性,以及幅度和相位测量的精度。幅度测量动态范围大于45 d B,相位测量的精度还有待进一步提高。已制定相位测量的改进方案,在后续实验中改进。  相似文献   

11.
运动规律已知的目标脱靶量测量方法   总被引:2,自引:0,他引:2  
研究运动规律已知的目标脱靶量测量问题.根据多普勒频率和脱靶量的参数方程,提出了一种脱靶量测量的新方法:首先通过时频变换,将目标回波信号表示为以频谱强度为灰度值的图像;然后通过门限检测把灰度图像变为二值图像;最后利用基于随机Hough变换(RHT)的曲线检测,通过求解多普勒频率和脱靶量参数方程获得脱靶量的估计值.打靶实测试验结果表明,该方法能够有效地克服多普勒频率测量误差对脱靶量测量的影响,提高了脱靶量的测量精度.  相似文献   

12.
提高多普勒雷达测速估计精度的方法   总被引:2,自引:0,他引:2  
针对连续波多普勒雷达外弹道测速的特点,为了解决频率分辨率与采样频率影响多普勒雷达速度测量精度的问题,提出应用快速傅里叶变换的频谱分析法.该方法基于目标弹道升、降规律对估计频率进行线性调整,能有效提高多普勒雷达的作用距离、测试精度和抗干扰能力,避免由于频率分辨率不够而出现连续相同的速度值.利用信号相邻两次截断后的频谱相位信息能提高频率估计精度.仿真结果和外场试验表明该方法在较低信噪比下,仍可以得到很高的频率估计精度.  相似文献   

13.
在光纤时间传递研究中,为了实现光纤传输时间延迟的精密补偿,必须对光纤时间传输延迟进行精密测量.我们研制了具有自主知识产权的"NTSC312精密时间间隔计数器",该设备可以对时间间隔、脉冲宽度、脉冲周期进行测量,测量范围:1ns~1s,测量分辨率:1ps,测量精度:优于10ps.  相似文献   

14.
在叙述等精度测频原理及误差分析的基础上,阐述低成本微控制器(MCU)的硬件设计和软件设计,用低成本MCU实现的等精度测频仪的精度高,成本低,可靠性高,使用方便,具有实用价值和生产意义.  相似文献   

15.
研究了一种可用于工业现场进行大尺寸零件精密测量的装置。该装置以有高稳定性和强抗干扰能力(室外时频率稳定性可达10-7)的双纵模热稳频He—Ne 激光器为光源,其拍频频率约为790MHz ,拍频波长λ约380mm,拍频波长为测量基准;以拍频波节点为对准标志, 最邻近节点到被测点的尾数间距x1,x2用组合于同一光路中的分系统激光干涉仪测量,分辨率为0.08μm的方法来进行大尺寸L的测量 。测试表明,此装置具有很好的环境适应性和同类仪器中最高的频差稳定度。整个测量系统可在0~20m 范围内工作,测量不确定度优于±30μm/ 10m 。对石油机械大尺寸零件测量的环境性和高精度性研究具有重要意义。  相似文献   

16.
激光测量和惯性测量都可以对物体位置、速度、姿态等物理参数进行测量.其中,激光测量有着测程远、精度高等特点;而惯性测量也有着自主性高,不易受干扰、采样率高等特点.根据FAST项目中对测量的实际要求,分析了在馈源舱动态测量任务中已有的激光测量系统的特点与不足,提出了引入惯性测量系统与激光测量系统结合以达到更好测量效果的方案,并对方案的可行性与实现方法进行了研究.  相似文献   

17.
分析了噪声发生器法的误差,分别给出了低频、中频及高频区的误差,这与通常只分为低频、高低的计算不同,更为精确。并给出了测量寄生参数Rd,Cd的方法,有实际应用价值。  相似文献   

18.
为精准测量信号频率等参数,设计了一种以STC89C52RC单片机为控制核心、由三极管3DG120、施密特触发器74HC14和分频器74HC4040等构成信号处理电路,可以测量信号频率、周期、脉冲宽度等参数的多功能数字频率计。该频率计通过RS232串口将单片机测量的数据传送至上位机,利用上位机软件集中显示所测信号的频率、周期、脉宽、占空比等各参数测量值并描绘出所测信号波形,给出了单元模块设计电路和配套的软件设计,并提出小信号测量时抗干扰的一些办法。实验表明,系统结构简单,是对电子计数器多功能和多用途的扩展型设计和研究,频率测量误差低于0.1%,达到设计技术指标,具有良好的人机交互性,其中信号频率测量范围为1~50MHz,可测小信号,幅值低于0.5 mV,能满足实际测量要求。  相似文献   

19.
针对大型复杂结构件几何参量在线精密测量的技术难题,本文开展了基于多轴联动激光扫描和结构光三目视觉摄影的尺寸测量技术研究;通过结构方案设计、算法研究、软件开发及系统搭建,研制了针对不同测量对象的多套非接触式几何尺寸测量系统.测试校准结果表明,激光扫描测量系统在15 m距离的测量不确定度为2.656 mm,结构光三目视觉测量系统在7 m距离的测量结果不确定度为1.552 mm,均满足大型结构件的测量范围及精度要求.在此基础上,本文采用两种类型的测量系统同时对生产现场大型热态锻件外圆直径参数进行在线测量,重复测量误差均小于±4 mm,测量结果表现出良好的一致性.研究结果为大型结构件表面和内部几何尺寸的高精度在线测量提供了有效的技术方法和装备.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号