首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过理论分析,建立了激光等离子体加速电子与固体靶相互作用产生相对论正电子的物理模型,以及Geant4模拟程序.以100 Me V量级的激光等离子体加速电子束参数为输入,模拟研究了不同靶材和靶厚条件下正电子束的产额、能量、角分布等主要物理参数.结果表明:金靶和钽靶是较优秀的电子—正电子转换靶材;对于相同的金属靶材面密度,正电子产额与原子序数Z的四次方成正比,与原子质量数A的平方成反比,即Ne+∝(Z2/A)2;对于不同的靶材,正电子产额有Ne+∝d2,其中d为靶材厚度,但仍存在一个最佳靶厚度.与利用拍瓦、皮秒激光束与固体靶相互作用产生正电子束的方案相比,利用本方案有望获得更高能量以及更小角发散的相对论正电子束,其流强可达107/shot.  相似文献   

2.
飞秒激光与固体靶相互作用中产生表面电子的实验研究   总被引:1,自引:2,他引:1  
在近相对论光强下, 对p偏振超强激光脉冲与固体靶相互作用过程中产生的超热电子的角分布和能谱进行了研究. 实验发现, 超热电子的发射主要集中在三个方向: 靠近靶面方向、法线方向和激光的背向. 结果分析表明: 导致超热电子沿着靶面发射的原因是它受到靶前的鞘层电场与表面磁场的共同作用; 而沿着法线方向发射的超热电子的主要加速机制是共振吸收机制.  相似文献   

3.
超短超强激光驱动等离子体,可获得电子能量高达1Ge V、质子能量高达60Me V的高性能粒子束,从而在高能加速器、聚变物理、短脉冲高亮度X光源产生、实现小型化自由电子激光等领域都有重大的应用价值。该研究主要研究利用超短超强激光在等离子体中形成稳定的特殊三维尾波结构,即空泡,实现单能电子加速。采用两种控制电子注入的方法,即两束激光对打和纳米细丝扰动,来提高电子加速的稳定性,并控制高能电子的数量和能量。该研究还将通过改变激光传输方向的等离子体密度,来改变空泡中纵向加速静电场的梯度,从而抵消高能电子束本身电荷分离场的梯度,以提高电子束的性能;还将研究高能电子束的细致结构,并考虑其可能的重大应用。该研究将利用靶后鞘层加速实现质子加速,并将利用多层靶来提高加速效率,利用微结构靶获得准单能质子束,同时研究获得高性能高能离子束的其他有效途径。  相似文献   

4.
传统电子加速装置以射频场作为驱动场.相比之下,太赫兹辐射波长更短,加速梯度更高,是未来紧凑型电子加速装置的一种潜在驱动场.此外,太赫兹脉冲可以提供一个超快调制场用于压缩和测量电子脉宽.近年来,太赫兹场与电子的相互作用引起了广泛关注.强激光与等离子体相互作用可同时产生大能量的太赫兹脉冲和大电量的超短电子束,这一优势使其有望成为太赫兹场调控电子、太赫兹泵浦-电子探测的新型独特平台.本文以一种可行的实验布局为例,研究了激光等离子体产生的太赫兹脉冲对同向传播电子束的偏转作用.通过计算模拟,系统讨论了各参数对太赫兹场引起的电子偏转的影响,发现太赫兹电场强度或脉宽增加会使偏转现象更为显著,另外,偏转现象与太赫兹波形有关.初步的演示性实验定性验证了数值分析结果.  相似文献   

5.
随着超强脉冲激光技术的不断发鼹,利用超强激光脉冲与平板等离子体相互作用产生超热电子的研究,在激光惯性约束中的“快点火”,医学中的射线治疗和台式激光加速器等领域广泛应用.木文用二维粒子模拟方法研究了超强短波脉冲激光与平扳等离子体薄靶相互作用中产生的超热电子.以研究结果表明,在平板等离子体薄靶后表面所产生的超热电子,角分布较小,定向性好,能获得很高的能量。  相似文献   

6.
采用2×10 16 W/cm 2 的超短激光脉冲辐照铝靶,研究了激光偏振态对超热电珑子发射的影响.对s偏振光,向外传播的超热电子射流沿激光偏振方向发射,而对于p偏振光,超热电子射流方向靠近靶面法线方向.文中还通过观测靶背面的X射线韧致辐射,对p,s偏振光产生的向内传播的超热电子行为进行了研究.  相似文献   

7.
超短脉冲强激光与固体靶相互作用后会产生高能超热电子, 就超热电子对激光功率密度的依赖关系进行了研究. 实验结果发现, 在非相对论光强下超热电子的发射方向主要在激光的偏振面内, 并且在较低光强时超热电子的发射方向接近激光的偏振方向, 随着光强的增加, 在接近激光光轴的方向上的超热电子数目逐渐增多; 在相对论光强时超热电子的发射方向偏离偏振面而转向激光的反射方向.  相似文献   

8.
激光烧蚀Al靶产生的等离子体信号的飞行时间测量   总被引:1,自引:0,他引:1  
利用快速存贮示波器(100MHz)对脉冲激光烧蚀固体Al靶产生的等离子体信号的飞行时间特征进行了测量.在YAG脉冲激光基频输出(脉宽10ns,波长1.06μm,能量108mJ/pulse)、烧蚀斑的直径为200μm、靶面上激光功率密度约为1×10  相似文献   

9.
等离子体光栅由于不存在电磁场击穿效应,因此在强场物理研究中有着重要的应用.通过粒子(particle-in-cell, PIC)模拟的方法,利用皮秒强激光脉冲(激光场强度I的数量级约为1015W/cm2)与超临界密度固体靶(粒子数密度n≈10nc)相互作用,发现了一种等离子体数密度光栅产生的新机制.研究表明,这种新型等离子体光栅来源于强激光在固体靶中激发的等离子体波的干涉.因此只需要单束激光就可以激发产生,其持续时间可达数皮秒量级.该光栅具有纳米尺度的空间周期,相比于传统的通过两束激光在稀薄等离子体中干涉产生的激光波长尺度(微米)的等离子体光栅,这一发现对于x波段的强光操控有着潜在的应用价值.  相似文献   

10.
飞秒脉冲激光沉积法的动力学过程实验研究   总被引:2,自引:0,他引:2  
用钛宝石飞秒激光器将最大峰值功率密度为1.14×1013 W/cm2的激光作用在Bi4Ti3O12陶瓷靶、Cu靶、FeSi2合金靶上,研究产生等离子体羽的颜色和形状一般规律:内芯均为白色对应于高温高压等离子体;紧跟内芯的是等离子体的复合形成中性粒子的区域;颜色单一的外层是温度较低的中性粒子和低温等离子体区.飞秒脉冲激光产生的等离子体呈cos4θ的角分布.在准分子脉冲激光沉积下衬底温度为500℃时-FeSi2薄膜的生长模式是Volmer-Weber模式,衬底温度为550℃时β-FeSi2薄膜的生长是Stranski-Krastanov模式.实验发现飞秒激光沉积技术能解决传统PLD法中产生大尺寸微滴的缺陷.  相似文献   

11.
随着超短超强脉冲激光技术的发展,人们可以在台面尺度获得光强超过1018W·cm-2、脉宽小于100fs的超短脉冲激光.这种超短脉冲激光很容易把初始静止的电子加速到相对论能量.而更重要的是超短激光脉冲可以通过其有质动力激发大振幅的等离子体波(称为激光尾波场),把电子加速到更高的能量.其加速梯度可达到100GeV·m-1,即在1mm的空间尺度把等离子体电子加速到100MeV.国际上4个实验室在2004年报道通过激光尾波场加速获得能量单色性以及方向性极好的电子束,使人们看到了激光尾波场加速电子的实际应用前景.文中简要介绍等离子体中激光尾波场加速电子的物理机制和方案、及该领域的最新进展和展望.  相似文献   

12.
用一维粒子模拟研究了超短激光脉冲在非均匀等离子体中传输时产生的光孤子结构和脉冲的分裂现象.比较了不同的激光强度和等离子体密度梯度对脉冲传播的影响.研究表明:超短激光脉冲在非均匀等离子体中传播时能产生传输的类孤子结构;随着入射激光强度的增大,等离子体对激光的反射密度反而减小,孤子脉冲的平均传播速度也减小;随着等离子体密度梯度的增大,等离子体对激光的反射密度变大,孤子脉冲的平均传播速度减小,孤子脉冲传播到高密度梯度的等离子体区域时,发生了全反射,反射的孤子脉冲在传播过程中由于能量的损失,低频脉冲被等离子体俘获,形成后孤子,而高频脉冲则继续传播,使得脉冲分裂.  相似文献   

13.
利用Nd:YAG脉冲激光烧蚀金属Cu靶,观测了在空气中产生的等离子体发射光谱;通过改变激光聚焦点到靶面的距离,研究了激光聚焦位置改变时等离子体光谱空间演化规律;由NⅡ500.52 nm谱线的相对强度和半高全宽随激光功率密度的演化规律,讨论了空气中激光聚焦位置对等离子体光谱的影响. 结果发现,光谱的相对强度和光谱结构强烈地依赖于透镜与靶面间距离的现象可以从激光功率密度的角度予以解释.  相似文献   

14.
高次谐波产生(High-order Harmonic Generation,HHG)使激光脉冲脉宽突破到阿秒量级成为可能.2001年第一次在实验上利用高次谐波产生的方法获得了650 as的脉冲,揭开了阿秒时代的序幕.根据介质的不同大致可以分为气体高次谐波、固体体材料高次谐波和固体等离子体高次谐波.气体高次谐波经过了二十多年已经发展得很成熟,并能通过气体高次谐波获得最短43 as的脉冲.固体体材料高次谐波和固体等离子体高次谐波因为转化效率高、光子能量高等独特优势已经成为产生阿秒脉冲的研究热点.本文主要介绍了高次谐波的发展历史,气体高次谐波、固体体材料高次谐波和固体等离子体高次谐波的发展现状以及阿秒脉冲测量和表征技术的发展,并对未来的发展趋势进行了总结展望.  相似文献   

15.
利用Nd:YAG激光器产生的1.06μm激光束(脉冲能量为500mJ,脉冲宽度为10ns,重复频率为10Hz)聚焦形成长约为8cm直径为5cm的激光大气等离子体柱,用光谱测量的方法,分别治平行于激光柬方向和垂直于激光束方向探测了该等离子体柱的空间分辨光谱,并由此反演得出电子温度空间分布特性.实验结果表明:激光大气等离子体中各种离子和电子呈橄榄形分布,即沿激光束方向分布不对称,而垂直激光柬方向对称分布,最高电子温度约为3000K.此结果对了解激光大气等离子体中各种处在不同状态的原子、分子和离子的空间分布特性提供了依据,进一步揭示了激光大气等离子体的微观结构.  相似文献   

16.
本文应用三维相对论电磁粒子模拟程序,研究超强超短脉冲激光与等离子体薄靶的相互作用中产生的磁场与电子热传导。研究结果表明,被激发的磁场使电子束在非常短的距离内沉积能量,同时对在激光有质动力推开电子时形成的电子热流产生抑制作用。对这些物理过程的细致研究对更好的理解快点火物理中自生磁场的产生,快电子输运等过程有重要意义。  相似文献   

17.
相对论激光与等离子体相互作用中形成的纳米电子束在强激光场中的相干同步辐射是产生相干极紫外线和X射线辐射的独特方式.相对论激光脉冲的宽度和等离子体的各种参数决定了产生单个阿秒脉冲还是阿秒脉冲串.在激光脉冲持续时间只有少数几个光学周期下,其载波包络相位对阿秒脉冲有重要影响.通过控制载波包络相位在合适的范围,可以得到孤立阿秒脉冲.除了驱动激光的载波包络相位,等离子体密度分布梯度和等离子体厚度也会影响阿秒脉冲的特性.  相似文献   

18.
文章分析研究了一价金属中电子的能量和金属相关性质。设计了两个实验,选择一价金属,用单色准直紫外激光做实验,在光电子能谱仪上精确测定出光电子的速率分布和概率分布。探测一价金属内部自由电子与原子实的能量分布以及结构模型;用紫外激光激励产生的单色的小焦点光电子束代替透射电子显微镜中电子束光源。  相似文献   

19.
由Q-Nd∶YAG脉冲激光(波长1.06μm,脉宽10 ns)烧蚀Al靶产生等离子体.观测了在低气压和直流电场条件下的Al等离子体发射光谱.研究了激光功率密度和直流电场对各谱线强度的影响,分析了等离子体电子温度与激光能量之间的变化规律.结果表明,直流电场对铝原子谱线和离子谱线强度有显著的增强作用,铝等离子体的电子温度随激光功率密度持续增长.  相似文献   

20.
通过辐照核能材料SiC, 表征激光加速质子束连续宽能谱、短脉冲和高瞬态流强的特点。将SiC样品放置在距离靶体4 cm处, 连续进行300发满足指数能谱分布的能量为1~4.5 MeV的激光加速宽能谱连续质子束辐照。表面和截面拉曼光谱显示辐照后的SiC散射峰强度减小, 且拉曼光谱截面测量的整体趋势可以与SRIM模拟的能谱加权后的深度能损分布对应, 从而通过实验对能量连续分布的激光加速质子束进行表征。此外, 实验结果显示, 激光加速质子束的短脉冲特性可在SiC表面产生相当高的瞬时束流密度。这种快速的宽能谱辐照为模拟反应堆中子辐照提供了可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号