首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
饱和软土地基中群桩施工引起的超孔隙水压力   总被引:23,自引:1,他引:23  
通过对挤土桩桩基施工过程中实测资料的分析和理论研究,认为群桩施工时的超孔隙水压力与单桩情况下的不同.虽然群桩的影响因素更为复杂,但在各桩施工时的相互影响和“水裂”作用的限制下,孔隙水压力值仍会趋于稳定.为此对饱和软土中桩群范围内超孔隙水压力的产生、分布和变化趋势进行了探讨,对桩群外超孔隙水压力的分布规律和影响范围也进行了讨论.  相似文献   

2.
对水泥土桩的变形模量,水泥土桩和CFG桩复合地基的桩间土应力发挥系数以及它们的静载荷试验方法进行了试验研究和理论分析,对今后进一步推广应用水泥土桩及CFG柱提供理论及实验依据。  相似文献   

3.
通过对现有粉喷桩施工过程喷粉压力的分析,提出了粉喷桩施工过程喷粉压力对桩周土体作用的分析模型,该模型可以考虑施工过程桩周土体中超静孔隙水压力随深度变化.分析了粉喷桩施工过程的桩周土体超静孔隙水压力产生与消散规律.利用平面圆柱扩张理论分析某一深度处超静孔隙水压力,求解出粉喷桩施工对桩周土体产生塑性区半径大小的解析式.由理论计算结果与实测结果表明,桩边附近的超静孔隙水压力的理论值与实测值较为吻合,而由于假设条件与实际情况存在着一定的差异,导致理论计算结果的塑性区半径偏大.但由理论计算表明,理论公式能较好反映粉喷桩施工对桩周土体的影响规律.  相似文献   

4.
沉桩过程土体超静孔隙水压力变化规律研究   总被引:2,自引:1,他引:1  
从空间圆孔扩张理论出发,提出了超静孔隙水压力随径向和深度方向变化的分布公式;并结合弹塑区连续理论,给出了沿深度线性增加,沿径向对数衰减的简化计算公式。同时考虑到沉桩速率对超静孔隙水压力的影响,结合圆孔扩张理论,推导获得沉桩时产生的孔隙水压力与沉桩速率之间的关系;并利用abaqus有限元对沉桩过程土体超静孔隙水压力变化进行数值分析,对工程中静压桩施工的控制,合理安排沉桩流程、沉桩速率,有一定的实际意义。  相似文献   

5.
根据桩、锥在软黏土中贯入的特点,用小孔扩张理论模拟其贯入过程,推导出桩、锥贯入时产生的超静孔隙水压力解析式.基于该解析解,研究了贯入过程中桩和孔压静力触探探头在对应位置产生的孔隙水压力之间的理论关系.孔压静力触探试验成果、理论计算值与现场桩周孔隙水压力监测数据对比分析结果表明,利用孔压静力触探试验预估沉桩瞬时产生的孔压...  相似文献   

6.
预测陷落柱突水灾害的物理模型及理论判据   总被引:1,自引:0,他引:1  
通过分析渗水井与陷落柱的联系和区别,借鉴渗水井等相关理论,建立了预测陷落柱突水的物理模型,确定了陷落柱的突水危险区域.陷落柱与采动工作面之间的突水危险区域可分为三部分:陷落柱周边围岩塑性破坏区、采场前方塑性破坏区与陷落柱周边渗透区域.根据弹塑性力学、流体力学的相关理论,推导出了预测陷落柱突水的理论判据,可用于矿井陷落柱突水灾害的预测.  相似文献   

7.
首先研究了水下双桩系统按照同向、反向振型振动时的频率及动水压力变化规律,通过分析发现,水下相邻桩反向振动振型会增强作用于桩身的动水效应。据此提出群桩—桁架组合基础设计方案,通过桩间桁架,限制群桩间反向振动,提高基础刚度。以四桩群桩基础模型为试验对象,进行了普通群桩基础和3种组合基础方案在不同水深条件下的水池模态试验,研究了群桩—桁架组合基础的动力性能。然后,通过对四跨连续梁桥进行地震反应谱分析,全面评估了该新型基础的抗震性能。研究表明,经过合理设计的群桩—桁架组合基础可以改善并优化深水桥梁的地震响应。  相似文献   

8.
动水压力对深水桥梁性能设计的影响   总被引:1,自引:0,他引:1  
通过一个深水桥墩实例对中国与日本桥梁抗震规范的地震动水压力计算方法进行比较研究,分析规范关于动水压力计算的异同点,计算表明两者结果相差较大. 对桥墩的动水压力进行数值模拟计算,考察动水压力沿深水桥梁高程的分布. 为研究动水压力对桥梁整体结构动力特性的影响,以主跨260 m的牛根大桥为背景建立有限元计算模型,采用附加质量法进行计算. 结果表明,附加质量法求得的位移和弯矩比不考虑动水作用的情况有较大增幅,也表明动水压力对桥梁的性能有较大的影响. 在深水桥梁的性能设计理论与应用领域中,水与桥墩的相互作用问题有必要进行进一步的研究.  相似文献   

9.
基于抗挤土效应,提出了预制自排水桩的设计思想,采用土体固结理论,研究了预制沉桩过程中桩周土体超孔隙水压力的消散速度,分析了预制自排水桩的沉桩排水效果,并通过工程实例和现场测试进行比较分析和验证。结果表明,预制自排水桩具有较好的排水效果,可以起到消散桩周土超孔隙水压力的效果,从而抑制沉桩挤土效应。  相似文献   

10.
为研究水平旋喷成桩对周围地层的影响问题,优化水平旋喷桩设计施工,采用现场试验的方法研究了水平旋喷成桩引起超静孔隙水压力的变化规律,探讨了水平旋喷施工的影响范围。水平旋喷成桩对周围地层的扰动较大,引发土体中产生较高的超静孔隙水压力。通过对水平旋喷成桩过程的分析,可以分为高压射流形成阶段,高压射流与土体相互作用阶段和水泥土固化阶段。研究结果表明:水平旋喷成桩产生的超静孔隙水压力随着施工阶段的改变而变化,高压流体注入时有所增大,而钻喷杆卸杆时则有所减小;成桩引起的最大超静孔隙水压力与注浆压力呈近似线性关系;随着施工距离的增大,超静孔隙水压力不断减小,当施工距离大于15 m时,基本可以忽略成桩引起的超静孔隙水压力;以水平旋喷成桩引起地层反应小于5%作为影响范围控制值,则超静孔隙水压力影响范围约为15~20倍成桩半径,可以采用指数函数的形式表达超静孔隙水压力与施工距离的关系。  相似文献   

11.
针对YAJ系列液压安全绞车动态响应慢、压力超调严重、系统稳定性较差等缺点,应用功率键合图理论建立了系统动态特性的状态方程,进行了数字仿真。通过试验研究,找到了影响系统动态特性的主要元件和参数。  相似文献   

12.
本文利用一种结构新颖的径向柱塞变量汞为基泵,将电液比例技术应用于恒压变量泵的控制上,开发了一种电-液一体化节能液压元件。该电液比例恒压调节器采用“压力直接检测反馈”和“级问动压反馈”两项新原理,改善了泵的非线性度、滞环、恒压误差及其稳定性。文中不仅在理论上分析了泵的结构参数对调节系统的影响,并且实验研究了恒压调节器的三个结构参数对恒压泵动态特性的影响。结果表明,该泵具有优良的静动态性能,可作为恒压源应用于液压系统中,有着显著的节能意义。  相似文献   

13.
为定量地认识孔压消散作用对土层抗液化能力的影响,通过建立描述在地震中动孔压的累积和消散耦合作用的物理模型,提出了估算振动砂石地基可可液化性能的有限无分析方法,并结合原平-太原高速公路的可液化砂土地基的处理工程进行了探讨。  相似文献   

14.
提出了一种双液压马达驱动振动沉桩机构,具有待机和沉桩两种自同步状态.介绍了其结构及工作原理,并建立了振动系统的动力学模型.推导出两激振器的无量纲耦合方程以及实现同步和同步稳定性判据,确定出两种状态的系统动力学参数范围.当桩机处于待机时,激振器处于远超共振状态,广义动态对称角为π,两偏心转子的激振力相互抵消;当桩机处于沉桩时,激振器处于亚共振状态,广义动态对称角为0,两偏心转子的激振力叠加.最终通过数值仿真进行了验证.  相似文献   

15.
本文介绍一种可不用动态流量计,而采用四个线性液阻组成的液压桥,由压力传感器测出桥路节点压力变化量,再经数学变换的方法得出蓄能器的阻抗频率特性。  相似文献   

16.
该文介绍了落狂液压动标装置的工作原理及其主要功能,分析了现有标准方法存在的问题。为提高校准系统的基本精度,提出了一种压力动态绝对校准方法,即用价格低、精度高的测力传感器取代测压传感器、实现压力动态绝对校准。文中分析了采用压力动态绝对校准的意义,介绍了实施方法,从理论上阐明了该方法可提高校准精度,通过实验证明了该方法的可行性。  相似文献   

17.
桩-土动力特性研究一直是桩基工程领域的重要问题,针对受纵向振动荷载下的横观各向同性土中大直径桩动力特性进行研究。基于横观各向同性材料本构方程,忽略土体径向位移建立轴对称条件下土体的动力平衡方程,结合边界条件求解方程,得到土体的位移和剪切力表达式。根据Rayleigh-Love杆模型建立大直径桩的纵向振动平衡方程,结合边界条件求解得到大直径桩在横观各向同性土中纵向振动的解析解,随后分析了桩土参数对土体、桩顶动力响应的影响。将理论解进行退化分析以及将理论解与数值模拟解进行对比进而验证了该理论解的正确性。  相似文献   

18.
软土地基中桩基施工时的挤压力影响   总被引:6,自引:0,他引:6  
通过分析实测资料 ,对桩基施工过程中对土的挤压力进行了研究 .讨论了桩端处土压力随桩体贯入深度的变化及其最大影响半径 ,并与理论解进行了对比 .对施工流程的影响进行了探讨 .提出群桩施工过程中的土压力有其最大值和稳定值 ,并从理论上作了说明 .结合孔隙水压力的资料 ,可为桩基施工的影响作进一步的有效应力分析 .  相似文献   

19.
恒流转阀式动力转向器的动态和静态特性研究   总被引:1,自引:0,他引:1  
对一种恒流转阀式液压助力转向器的动、静态特性进行了理论分析,给出了无量纲静态压力特性方程及其理论特性曲线,对静态特性进行了实验研究.并对理论分析与实验结果进行了比较,由此提出了几种改善其性能的方法和措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号