首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为满足回转工件的圆度加工精度要求,以M(National Instruments)公司的最新版图形化编程软件LabVIEW 8为圆度仪的虚拟界面编程平台,结合步进电动机控制的旋转工作台、电感位移传感器、USB插口的数据采集卡和自行设计的信号调理电路等硬件组成部分,设计了实验虚拟圆度仪系统.测量时,采用两种误差分离技术分离圆度仪主轴误差,然后根据不同的圆度误差评定标准,进行圆度评定,计算出圆度误差.圆度误差值为组建用于动态测量精度理论研究的分析实验系统做准备.  相似文献   

2.
形状误差分离统一理论—解的确定性准则   总被引:1,自引:0,他引:1  
形状误差分离的根本问题是误差分离方程的求解,其解是否存在,决定了形状误差能否分离.通过对现存的各种圆度、直线度、圆柱度及螺纹导程误差等形状误差分离技术的深入探讨,就形状误差分离技术的共同性质作了归纳,据此提出了在线误差测量和分离的一般方法,给出形式统一的矩阵方程.在此基础上,针对误差分离统一方程解的性质进行了详细讨论,应用矩阵理论给出了误差分离统一方程解的确定性准则.结合形状误差分离技术的具体实现,给出了多点法的测量传感器个数和多步法测量传感器移步步数的统一确定方法.  相似文献   

3.
文中介绍了精密车床主轴回转误差的一种补偿系统及补偿刀架结构,可以提高被加工件的圆度。实验表明,主轴转速为485 r/min 下,工件圆度误差由原来的1~1.7μm 减少到0.4~0.8μm,即补偿掉了40%~67%.文中还介绍了一种主轴回转误差的综合误关差计算机辅助测试系统,可绘制出径向、摆角、轴向3种回转误差的误差曲线图和误差频谱图,并打印出误差值、相关系数等。  相似文献   

4.
由 Talyrond 3型圆度仪、精密分度转台和 IBM-PC微机组成计算机辅助纳米圆度测量系统.采用多步法误差分离技术,将圆度仪的测量精度由原来的 25 nm提高到 2nm。文中详细讨论多步法的方法误差、系统误差及其测试结果。该项技术的推广应用对我国现有圆度仪的技术改造具有重要意义。  相似文献   

5.
本文引入理想圆心运动的概念,将主轴回转精度的动态特性研究归结为复时间序列的逼近、建模、预测和控制的分析.文中提出了复时间序列的一致逼近方法,推导出按最小包络评定回转误差的理论和算法,并运用复时间序列的分析方法,对主轴回转的动态特性进行建模,提取特征.文中还讨论了复时间序列的分离问题,阐明了复时间序列在特征抽取过程中的消噪方法,解决了回转误差和圆度误差的分离问题.  相似文献   

6.
主轴径向回转误差是影响机床加工精度和圆度等仪器测量精度的重要因素。主轴径向回转误差的测量和评定,对于减少其误差,提高机床的加工精度和圆度等仪器的测量精度都具有积极作用。本文提出了一种评定主轴径向回转误差的最小区域环计算法,在计算中不需要试探,可以直接确定出最小区域环圆心移动的最佳方向和步长,较之以往的传统计算方法具有速算速度快和计算精确的特点。  相似文献   

7.
本文以Apple-Ⅱ微机为基础,应用计算机辅助试验(CAT)技术,提出了一种高精度主轴回转精度在线测量和数据处理系统,该系统由标准球、通用仪器、微型机和成套数据处理软件组成。文中在采用统计消偏和改进单纯形方法的基础上,对数据处理和误差评定进行了探讨,将系统用于外圆磨床主轴回转精度的实际测量,给出了砂轮和工件主轴回转误差的处理结果,并进行了相应的分析。  相似文献   

8.
本文指出了在主轴回转误差诊断的研究中,把误差运动当作确定性周期过程,用谐波分析法进行分析处理存在的问题,提出了把主轴回转误差运动当作平稳随机过程,应用时间序列分析法对动态测试数据进行分析处理,讨论了时间序列分析法的建模问题,拟定了相应的误差诊断闲测试分析系统方案。  相似文献   

9.
分析了采用角位移三点法和线位移三点法测量工件圆度误差时,两种方法权函数的频域特性:谐波抑制特性、测量系统权函数总体特点性对噪声的敏感特性。结果表明,角位移三点法存在0阶、1阶谐波抑制,且该测量系统的权函数有高通特性,这些特性不利于提高属于低频信号范围的圆度误差的测量精度,但有助于抑制测量噪声对圆度误差分离精度的影响。  相似文献   

10.
主轴回转误差影响车削工件的加工精度,本文通过对主轴回转误差的分析和研究,提出了一种基于回转误差的车削工件2-D表面形貌检测方法,并建立了车削过程数学模型. MATLAB仿真结果表明,主轴径向回转误差会影响工件的车削半径和表面形貌,进而造成工件的同轴度误差、圆度误差,并增大表面粗糙度.为验证所提方法的有效性,搭建了2-D表面形貌检测平台进行数据采集,得到了主轴在切深方向的回转误差和车削工件的平均半径误差.实验结果表明实验与仿真结果在特性上具有一致性,验证了方法的可行性,对机床的性能调试及提高工件的加工质量具有参考价值.  相似文献   

11.
The discovery of the prolific Ordovician Red River reservoirs in 1995 in southeastern Saskatchewan was the catalyst for extensive exploration activity which resulted in the discovery of more than 15 new Red River pools. The best yields of Red River production to date have been from dolomite reservoirs. Understanding the processes of dolomitization is, therefore, crucial for the prediction of the connectivity, spatial distribution and heterogeneity of dolomite reservoirs.The Red River reservoirs in the Midale area consist of 3~4 thin dolomitized zones, with a total thickness of about 20 m, which occur at the top of the Yeoman Formation. Two types of replacement dolomite were recognized in the Red River reservoir: dolomitized burrow infills and dolomitized host matrix. The spatial distribution of dolomite suggests that burrowing organisms played an important role in facilitating the fluid flow in the backfilled sediments. This resulted in penecontemporaneous dolomitization of burrow infills by normal seawater. The dolomite in the host matrix is interpreted as having occurred at shallow burial by evaporitic seawater during precipitation of Lake Almar anhydrite that immediately overlies the Yeoman Formation. However, the low δ18O values of dolomited burrow infills (-5.9‰~ -7.8‰, PDB) and matrix dolomites (-6.6‰~ -8.1‰, avg. -7.4‰ PDB) compared to the estimated values for the late Ordovician marine dolomite could be attributed to modification and alteration of dolomite at higher temperatures during deeper burial, which could also be responsible for its 87Sr/86Sr ratios (0.7084~0.7088) that are higher than suggested for the late Ordovician seawaters (0.7078~0.7080). The trace amounts of saddle dolomite cement in the Red River carbonates are probably related to "cannibalization" of earlier replacement dolomite during the chemical compaction.  相似文献   

12.
AcomputergeneratorforrandomlylayeredstructuresYUJia shun1,2,HEZhen hua2(1.TheInstituteofGeologicalandNuclearSciences,NewZealand;2.StateKeyLaboratoryofOilandGasReservoirGeologyandExploitation,ChengduUniversityofTechnology,China)Abstract:Analgorithmisintrod…  相似文献   

13.
本文叙述了对海南岛及其毗邻大陆边缘白垩纪到第四纪地层岩石进行古地磁研究的全部工作过程。通过分析岩石中剩余磁矢量的磁偏角及磁倾角的变化,提出海南岛白垩纪以来经历的构造演化模式如下:早期伴随顺时针旋转而向南迁移,后期伴随逆时针转动并向北运移。联系该地区及邻区的地质、地球物理资料,对海南岛上述的构造地体运动提出以下认识:北部湾内早期有一拉张作用,主要是该作用使湾内地壳显著伸长减薄,形成北部湾盆地。从而导致了海南岛的早期构造运动,而海南岛后期的构造运动则主要是受南海海底扩张的影响。海南地体运动规律的阐明对于了解北部湾油气盆地的形成演化有重要的理论和实际意义。  相似文献   

14.
Various applications relevant to the exciton dynamics,such as the organic solar cell,the large-area organic light-emitting diodes and the thermoelectricity,are operating under temperature gradient.The potential abnormal behavior of the exicton dynamics driven by the temperature difference may affect the efficiency and performance of the corresponding devices.In the above situations,the exciton dynamics under temperature difference is mixed with  相似文献   

15.
The elongation method,originally proposed by Imamura was further developed for many years in our group.As a method towards O(N)with high efficiency and high accuracy for any dimensional systems.This treatment designed for one-dimensional(ID)polymers is now available for three-dimensional(3D)systems,but geometry optimization is now possible only for 1D-systems.As an approach toward post-Hartree-Fock,it was also extended to  相似文献   

16.
17.
The explosive growth of the Internet and database applications has driven database to be more scalable and available, and able to support on-line scaling without interrupting service. To support more client's queries without downtime and degrading the response time, more nodes have to be scaled up while the database is running. This paper presents the overview of scalable and available database that satisfies the above characteristics. And we propose a novel on-line scaling method. Our method improves the existing on-line scaling method for fast response time and higher throughputs. Our proposed method reduces unnecessary network use, i.e. , we decrease the number of data copy by reusing the backup data. Also, our on-line scaling operation can be processed parallel by selecting adequate nodes as new node. Our performance study shows that our method results in significant reduction in data copy time.  相似文献   

18.
R-Tree is a good structure for spatial searching. But in this indexing structure,either the sequence of nodes in the same level or sequence of traveling these nodes when queries are made is random. Since the possibility that the object appears in different MBR which have the same parents node is different, if we make the subnode who has the most possibility be traveled first, the time cost will be decreased in most of the cases. In some case, the possibility of a point belong to a rectangle will shows direct proportion with the size of the rectangle. But this conclusion is based on an assumption that the objects are symmetrically distributing in the area and this assumption is not always coming into existence. Now we found a more direct parameter to scale the possibility and made a little change on the structure of R-tree, to increase the possibility of founding the satisfying answer in the front sub trees. We names this structure probability based arranged R-tree (PBAR-tree).  相似文献   

19.
There are numerous geometric objects stored in the spatial databases. An importance function in a spatial database is that users can browse the geometric objects as a map efficiently. Thus the spatial database should display the geometric objects users concern about swiftly onto the display window. This process includes two operations:retrieve data from database and then draw them onto screen. Accordingly, to improve the efficiency, we should try to reduce time of both retrieving object and displaying them. The former can be achieved with the aid of spatial index such as R-tree, the latter require to simplify the objects. Simplification means that objects are shown with sufficient but not with unnecessary detail which depend on the scale of browse. So the major problem is how to retrieve data at different detail level efficiently. This paper introduces the implementation of a multi-scale index in the spatial database SISP (Spatial Information Shared Platform) which is generalized from R-tree. The difference between the generalization and the R-tree lies on two facets: One is that every node and geometric object in the generalization is assigned with a importance value which denote the importance of them, and every vertex in the objects are assigned with a importance value,too. The importance value can be use to decide which data should be retrieve from disk in a query. The other difference is that geometric objects in the generalization are divided into one or more sub-blocks, and vertexes are total ordered by their importance value. With the help of the generalized R-tree, one can easily retrieve data at different detail levels.Some experiments are performed on real-life data to evaluate the performance of solutions that separately use normal spatial index and multi-scale spatial index. The results show that the solution using multi-scale index in SISP is satisfying.  相似文献   

20.
The geographic information service is enabled by the advancements in general Web service technology and the focused efforts of the OGC in defining XML-based Web GIS service. Based on these models, this paper addresses the issue of services chaining,the process of combining or pipelining results from several interoperable GIS Web Services to create a customized solution. This paper presents a mediated chaining architecture in which a specific service takes responsibility for performing the process that describes a service chain. We designed the Spatial Information Process Language (SIPL) for dynamic modeling and describing the service chain, also a prototype of the Spatial Information Process Execution Engine (SIPEE) is implemented for executing processes written in SIPL. Discussion of measures to improve the functionality and performance of such system will be included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号