首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了探究体积比对脱氮除磷性能的影响,采用分段进水改良厌氧-缺氧-好氧(A2/O)工艺处理高氨氮低碳氮比的生活污水。在污泥回流比为70%,水力停留时间(HRT)为10 h条件下,考察了体积比(V预缺氧∶V厌氧∶V缺氧∶V好氧)对系统去除有机物、硝化效果、反硝化效果、总氮(TN)和总磷(TP)的影响。试验结果表明:不同体积比对系统有机物的去除和硝化效率影响不显著,出水化学需氧量(COD)和氨氮浓度分别在50 mg/L、5 mg/L以下;系统TN和TP去除受体积比影响较大,体积比为18∶18∶36∶72时,缺氧体积所占比例较大,反硝化细菌获得充足反应时间,反硝化效果最好,TN去除率平均达83.24%;体积比为12∶24∶24∶84时,厌氧体积的增加,为聚磷菌厌氧释磷提供有利条件,TP去除效果最佳,平均去除率达93.63%。  相似文献   

2.
城市污水部分亚硝化的实现与稳定运行   总被引:2,自引:0,他引:2  
在常温(16.4~25.5℃)限氧(溶解氧DO质量浓度为0~0.60 mg/L)条件下,以A/O除磷工艺二级出水为原水,采用中试规模(容积1.14m3)的推流式反应器进行部分亚硝化试验研究.试验结果表明:较低的DO质量浓度(<0.60mg/L)、沿程交替好氧缺氧的运行模式及较恒定的氨氮污泥去除负荷是实现部分亚硝化的关键因素;通过调整反应器4个格室的曝气量分别为4~8,3~4,0和3~5 L/min,沿程形成好氧、好氧、缺氧、好氧的环境,DO质量浓度分别为0.40~0.60,0.25~0.45,0.05~0.10和0.40~0.60 mg/L,水力停留时间(HRT)为7~9h,污泥回流比为40%~60%,氨氧化率控制在55%左右,出水m(NO2-N)/m(NH4+-N)平均为1.11,部分亚硝化效果稳定,亚硝化率超过95%,达到后续厌氧氨氧化(ANAMMOX)生物滤池进水要求;整个运行阶段污泥沉降性能良好,污泥容积指数(SVI)为60~100 mL/g,未出现污泥膨胀现象.  相似文献   

3.
硝化液回流比对水解-A/O工艺脱氮效果的影响   总被引:2,自引:0,他引:2  
以低碳氮比城市污水为处理对象,在生产性试验规模上,研究不同硝化液回流比情况下水解-A/(缺氧-好氧)O工艺脱氮效果,并以相对小时去除量为评价量,讨论回流比对脱氮效果的影响.结果表明:水解-A/O工艺对COD,TN,NH4+-N,TP的平均去除率分别达到84.0%,64.2%,98.2%和73.2%,出水除TP和SS外,COD,TN以及NH4+-N都达到了GB18918—2002的一级A标准;在高硝化液回流比工况下,工艺运行效果更好;在硝化液回流比为200%的工况下,该工艺系统和水解池出水COD,NH4+-N,TN及TP比硝化液回流比为100%时分别低8.90,0.07,3.74,0.58mg/L和25.40,6.22,4.09,1.46mg/L.通过物料衡算,采用相对小时去除量的比值作为评价量,评价结果表明:在较高硝化液回流比条件下,水解池对污染物的去除能力增强,减轻了A/O生物池的去除负荷,进而增强了整个工艺对污染物的去除能力.  相似文献   

4.
陆艳侠 《科技信息》2011,(5):241-241,253
为了满足出水总氮的要求,采用前置反硝化工艺完成脱氮过程。本文对曝气生物滤池前置反硝化工艺脱氮、去除COD的工艺性能进行研究,结果表明,系统对COD的去除主要发生在好氧柱,好氧柱出水基本比较稳定,系统出水COD浓度始终保持在50mg/L以下,COD去除率在83%以上;系统对氨氮有较高的去除效果,出水氨氮浓度低于4mg/L,去除率在80%以上;系统对总氮的去除率在40~50%之间。系统对总氮的去除率不高。  相似文献   

5.
采用厌氧生物滤池(BF)与好氧膜生物反应器(MBR)组合工艺,以实际垃圾渗滤液为处理对象,在连续进水条件下,考察该工艺在处理垃圾渗滤液时,进水稀释倍率、厌氧/好氧(A/O)回流比和C/N比值对其硝化与反硝化特性的影响.结果表明,在处理稀释10倍的渗滤液时,氨氮和总氮的平均去除率分别稳定在90%和65%附近,回流比和C/N比值对好氧的硝化与厌氧反硝化反应的影响很小;在处理稀释5倍的渗滤液时,提高C/N比值能使厌氧反硝化能力增强,有效地消除亚硝氮的积累.渗滤液中有较高的浓度的氨氮与有机物负荷,容易对硝酸化菌产生抑制作用,使膜出水的亚硝氮积累明显,氨氮和总氮平均去除率分别稳定在69%~78%和46%~50%.  相似文献   

6.
针对新型脱氮工艺短程硝化?厌氧氨氧化(ANAMMOX)过程中亚硝氮难以稳定生成的难题, 设计水解酸化+UASB+好氧氧化的处理工艺, 应用于实际垃圾渗滤液处理工程。结果表明, 当进水氨氮浓度为610~1900 mg/L, C/N 比为1.8~3.5时, 在进水量为100 m3/d, 回流比为2:1, pH 值为7.5~8.0, DO为2.0 mg/L的调试条件下, O池发生短程硝化, 积累200 mg/L的亚硝氮, 积累率最高达78%。微生物DNA 检测发现, O池中AOB物种丰度是NOB的10倍以上。水解酸化池中存在COD、氨氮和总氮同时去除的现象, COD去除量不能满足全部总氮反硝化, 剩余的总氮通过厌氧氨氧化过程去除, 通过ANAMMOX反应去除的总氮占水解酸化池总氮去除量的35%~67%。在实际垃圾渗滤液处理工程中, 通过控制进水量、回流比、pH和溶解氧等条件, 成功地启动短程硝化?厌氧氨氧化工艺。  相似文献   

7.
目的找出水解酸化-曝气生物滤池对盐化工废水中氨氮去除率的影响规律,进而为工程实践中生物曝气滤池的运行参数设计与调控提供借鉴.方法通过正交实验和单因素实验获取水解酸化-曝气生物滤池处理盐化工废水的实验数据,利用SPSS软件和1stopt软件分别建立了单因素和多因素的数学模型.结果通过正交实验得到去除盐化工废水中NH4_+~-N的最优工作参数为p H=7.5,水力表面负荷为6(m·h~(-1)),容积负荷为9.6(kg·m~(-3)·d~(-1)),气水质量比为10%,流速为4 m/s,各因素影响曝气生物滤池反应效果的显著性为p H流速气水比表面负荷容积负荷.结论单因素模型确定各因素变化时盐化工废水出水氨氮去除率的变化规律,多因素模型得出盐化工废水出水氨氮去除率与各因素关系为F(x_1,x_2,x_3,x_4,x_5)=0.038 7×f_1(x)~(0.597)f_2(x)~(2.3×10~(-7))f_3(x)~(1.47×10~(-10))f_4(x)~(0.252)f_5(x)~(0.536).  相似文献   

8.
通过控制膜生物反应器(MBR)中溶解氧(DO)浓度、碳氮比(C/N)、污泥浓度(MLSS)和水力停留时间(HRT)等摸索了实现同步硝化反硝化的工艺条件,同时对好氧反应器中实现同步硝化反硝化的机理进行了探讨.化学需氧量(COD)在250 mg/L左右,C/N为10~30∶1,MLSS为5 g/L,HRT为5.0 h,DO为0.6~0.8 mg/L时,总氮去除率达86.0%,取得了良好的总氮去除效果,表明由于好氧反应器中缺氧区的存在,控制好操作条件可以实现同步硝化反硝化.体系中氨氮、硝态氮浓度的变化与总氮去除的关系说明短程反硝化现象的存在,而且在实现同步硝化反硝化过程中发挥着重要的作用.  相似文献   

9.
为实现硫铁矿自养反硝化工艺快速启动,提高出水稳定性,将以硫铁矿为填料的硫自养反硝化生物滤池反应器(1号反应器)作为对照组,分别构建了以硫铁矿/石灰石和硫铁矿/硫黄为填料的强化型硫铁矿生物滤池反应器(2号、3号反应器)处理城市污水处理厂二沉尾水,从去除效果、出水水质的角度来评价强化工艺的可行性,并通过微生物群落分析来探究强化工艺的强化机理.结果表明:当反应温度为31~33℃,水力停留时间(HRT)为2.2 h时,3个生物滤池反应器总氮(TN)去除率分别为91.3%(1号反应器)、84.5%(2号反应器)、100%(3号反应器),出水TN浓度均小于5 mg/L;总磷(TP)去除率分别为91.4%(1号反应器)、85.0%(2号反应器)和100%(3号反应器),TP去除效果随TN去除效果的提升而提升;出水pH基本均能维持在6.8~7.6,体系内硫酸根生成量较低,维持在4.99~5.91 mg(每mg NO-3-N).Thiobacillus作为硫铁矿自养反硝化工艺的核心功能菌属在3号反应器内占据优势地位.以硫铁矿/硫黄为填料的生物滤池反应器不仅可以...  相似文献   

10.
前置反硝化生物滤池具有良好的脱氮性能,回流比是影响其脱氮性能的重要影响因素.调节回流比参数,考察回流比分别为100%、200%、300%时的工艺参数条件下,前置反硝化生物滤池对COD、NH3—N、NO3-—N、TN的去除效果.试验表明回流比对反应器中COD、NH3—N、NO3-—N、TN均有一定的影响,对TN的去除影响最大.在一定的范围内(100%~200%),增加回流比有助于提高系统对污染物的去除,但当回流比过大时(300%),系统出水水质下降.确定最佳回流比为200%,该工况下系统出水COD、NH3—N、TN平均质量浓度分别为28.45、2.27、12.45 mg/L.  相似文献   

11.
垂直流人工湿地净化处理水产养殖废水   总被引:1,自引:0,他引:1  
采用垂直流人工湿地工艺对模拟的水产养殖废水进行脱氮除磷等处理,并分析探讨该工艺的除污效率.结果表明:当预先在进水箱中进行曝气且气水体积比为1∶1、水力负荷为0.15m~3·(m~2·d)~(-1)、进水温度为10~20℃时,垂直流人工湿地对化学需氧量(chemical oxygen demand,COD)、氨氮、总氮和总磷的去除效果较好,去除率分别达到82.75%,83.68%,88.85%,84.72%,能够有效地处理水产养殖废水.  相似文献   

12.
目前大多数城市污水处理工艺主要还是以活性污泥法为主.为了提高水处理时总氮(N)的去除效率,缺氧/好氧(A/O)工艺被普遍采用.但在该工艺中,缺氧池(A池)和好氧池(O池)通常均没有独立的沉降过程,因此两池之间的回流都是连泥带水一起回流.基于专利技术"垂直折流式生物反应器"(VBBR)可以轻易实现泥水分离,做到清水回流,因此研究采用对比的方法探讨了清水回流是否可以提高硝化和反硝化速率.实验结果表明:若采用清水回流,相比传统的泥水回流,其硝化速率可以提高12%,反硝化速率则可以提高2.5倍.该实验结果为今后城市污水处理过程中高效脱氮打下了良好的理论和实践基础.  相似文献   

13.
利用自培养硝化污泥与实验室筛选的1株反硝化细茵共培养形成共生污泥,构建膜生物反应器(MBR)单一反应体系同步硝化反硝化系统,得到系统良好同步硝化反硝化曝气量和污泥浓度的最优条件.由试验结果可知:在混合污泥质量浓度(MLSS)6.0~10.0g/L时,调节曝气量,可以使单污泥同步硝化反硝化总氮(TN)去除率达到85%以上.不同MLSS下,达到最高TN去除率的最佳曝气量随着MLSS增高而向高曝气量偏移.随着MLSS增高,响应因子F变小,由曝气量的变化而引起的TN去除率变化明显变缓,表示MLSS对O2传递的缓冲能力越强.在MLSS为8g/L条件下,低负荷比较容易达到较高的TN去除率,而高负荷下需要更高的曝气量以获得高的TN去除率,系统适合的NH4+-N负荷范围0~0.30 kg/(m3·d).MLSS≥3.0g/L,出水化学需氧量(COD)低于50 mg/L,COD大部分贡献于反硝化所需C源.单一反应体系同步硝化反硝化系统能对负荷的改变作出及时的回应,整体上运行比较稳定.  相似文献   

14.
提出了一种新型的A2/O-生物接触氧化(A2/O-BCO)双污泥系统.该工艺通过在A2/O反应器中充分利用原水碳源,以BCO反应器完成硝化的NO-x-N为电子受体,实现稳定高效的反硝化除磷.考察了实际生活污水在A2/O反应器中不同容积分配比(厌氧/缺氧/好氧)对A2/O-BCO系统反硝化除磷特性的影响.结果表明:系统对有机物的去除具有较好的稳定性,且容积比的变化对COD的去除率影响不大;当容积比为2∶4∶1时,系统达到了较高的脱氮除磷效果,出水的TN和PO3-4-P浓度分别为13.41和0.28 mg/L.通过氮平衡分析发现,BCO反应器存在同步硝化反硝化现象,同时厌氧氨氧化的发生也促进了氮损失.此外,A2/O反应器的好氧区对稳定出水PO3-4-P浓度发挥着重要作用,为了防止二次释磷,中间沉淀池的NO-x-N浓度应控制在1.95~2.75 mg/L.  相似文献   

15.
水力停留时间是制约A2/O工艺的关键因素,直接影响系统的脱氮除磷效率.本试验采用了50 L的A2/O实验装置处理人工模拟生活污水,考察了不同水力停留时间(Hydraulic Residence Time.HRT)对A2/O工艺脱氮除磷的影响,实验结果表明,在厌氧:缺氧:好氧体积比为1∶1∶2,污泥回流比为75%,混合液...  相似文献   

16.
曝气生物滤池及其填料性能   总被引:2,自引:0,他引:2  
为提高曝气生物滤池(BAF)处理废水的效率,以沸石、活性炭、建筑陶粒、工程陶粒作为填料测试气体流速、水力停留时间(HRT)、进水有机负荷对生物滤池的化学需氧量(COD)、NH3—N的去除效果及出水浊度的影响。结果表明:在水力停留时间为1.5h、进水COD为150mg/L、有机负荷为2.41kgCOD/(m3·d)时,两种陶粒出水COD均小于25mg/L;当进水有机负荷为0.74kgCOD/(m3·d)时,工程陶粒出水COD小于10mg/L;工程陶粒是曝气生物滤池填料的最佳选择。  相似文献   

17.
以缺氧/好氧生物膜系统处理碳氮质量比为3.45±0.77的生活污水,当内回流比(R)为250%~300%时,重点考察低温下好氧移动床生物膜反应器(MBBR)内的同步硝化反硝化(SND)特性。研究结果表明:系统通过延长水力停留时间(HRT)(19.2 h→30.3 h),较好地适应了季节性降温(25.2℃→14.6℃),出水COD((51.1±6.3)mg/L)和NH4+-N((2.76±2.02)mg/L)质量浓度分别达一级B和一级A标准。SND脱氮率受低温影响较小,当水温为(23.0±1.6)℃(R=250%),(19.5±0.9)℃(R=300%),(17.1±0.6)℃(R=300%)和(15.1±0.4)℃(R=300%)时,可去除进水中39.4%~47.3%的总氮TN,出水TN质量浓度分别为(18.44±2.60),(13.92±3.16),(14.93±2.19),(14.11±2.14)mg/L。同步反硝化成为发生SND的关键,平均厚度为323~1 143μm的载体生物膜可形成缺氧"微环境",并在长HRT下有效利用原水中的缓慢降解碳源,发生内源反硝化。在DO质量浓度为(3.5±0.5)mg/L,碳氮质量比为2.5~3.3时,MBBR内的生物膜可实现速率为0.353 mg/(L·h)的同步脱氮。  相似文献   

18.
以人工配置的模拟城市污水为处理对象,利用厌氧/好氧(A/O)模式运行的微压内循环多生物相反应器(MPSR),研究了不同曝气量[0.100,0.075和0.050L/min]对MPSR反应器同步脱氮除磷的影响.结果表明:随着曝气量的降低,总氮去除率由75.39%提高至81.21%,同步硝化反硝化效率由20.68%提高至33.55%,但出水均符合一级A标准.当曝气量为0.050L/min)时,MPSR反应器具有最佳的脱氮除磷效果,出水中COD,NH4+-N,总氮、总鳞平均质量浓度分别为30.77,0.15,7.14和0.06mg/L.相对低的曝气量有利于强化MPSR的脱氮性能,稳定除磷效果,同时有利于节约能耗.  相似文献   

19.
上流式曝气生物滤池脱氮性能研究   总被引:12,自引:0,他引:12  
文章对单级上流式曝气生物滤池的脱氮性能进行了初步研究。研究结果表明,在进水有机负荷为4~12kgCOD/(m3·d)、水力负荷1~4m3/(m2·h)及气水比1∶1~5∶1的工艺条件下,COD和NH3-N的去除率达到70%~86%和53%~79%。在水力负荷较低时,控制气水比可以实现同步硝化反硝化。  相似文献   

20.
短程硝化联合厌氧氨氧化处理垃圾渗滤液的启动   总被引:1,自引:0,他引:1  
针对晚期垃圾渗滤液脱氮难的问题,采用短程硝化SBR联合厌氧氨氧化SBR工艺处理晚期垃圾渗滤液.短程硝化SBR经过50 d驯化和培养,其最终出水亚硝态氮质量浓度维持在500 mg/L左右,短程硝化率稳定在98%以上.为了消除过高亚硝态氮对厌氧氨氧化菌的抑制,压氧氨氧化SBR由传统的操作模式改为反应期间连续进水间歇沉淀和出水,其水力停留时间控制在20 h.在配水驯化期,进水亚硝质量浓度由60 mg/L提升至395 mg/L,总氮容积去除速率由0.10 kg/(m3·d)提升至0.75 kg/(m3·d);驯化结束后,逐步掺入渗滤液,在实验的第156天,进水中的亚硝态氮全部由好氧SBR的出水提供.研究结果表明:渗滤液中难降解的COD未对厌氧氨氧化菌产生抑制作用,少量的反硝化作用反而提高了系统总氮的去除率,此时,系统的总氮容积去除速率为0.76 kg/(m3·d),进水COD、亚硝态氮和氨氮质量浓度分别为295,390,295 mg/L,出水CDO、亚硝态氮和氨氮质量浓度分别为246,1.3和0.6 mg/L;在不添加任何碳源的条件下,总氮去除率达90%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号