首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 515 毫秒
1.
传统的特高压直流输电系统一般在换流站交流网侧布置滤波兼无功补偿装置.为了避免谐波对换流变压器的不良影响,本文提出了一种滤波绕组并联的感应滤波换流变压器的谐波抑制方法,文中描述了其接线方案,解释了其滤波机理,并与传统的滤波方案进行了对比分析.以酒泉-湖南的±800kV特高压直流输电的工程参数为依据,搭建了所提滤波方案和传统方案的仿真模型.两个模型的阀侧和网侧电流的对比分析证明,新型谐波抑制方法效果良好.  相似文献   

2.
针对某±800 kV特高压换流站直流分压器在雷电天气下发生空气间隙或沿面闪络故障,为分析其故障原因,采用电磁暂态仿真程序计算了换流场避雷线布置方案下雷电绕过避雷线直击直流分压器的直击雷过电压和换流站雷电侵入波过电压,验证分析了其绝缘配合,提出了进一步需要研究的问题和防治措施建议。  相似文献   

3.
龙开源 《广东科技》2012,21(13):68-69
±500kV及以上电压等级的直流输电线路以往的运行经验证明了,直流输电线路遭受雷击的情况较为严重。直流输电在电力输送系统中是一种十分重要的输电方式,尤其适用于远距离大功率输电,因为距离远、路段土壤和天气等环境因素使雷电对其影响较大,故必须采取防雷措施。不同于过去对防雷技术以降低接地电阻为目标的理解偏差,现在人们对防雷中接地电阻的认识更加全面。选取了防雷方式中的接地电阻方式来探究其阻值和装置型式对±500kV及以上电压等级的直流线路输电防雷的影响,并给出因地制宜选取接地电阻的规定和设计接地装置时的具体要求。  相似文献   

4.
针对糯扎渡电站送电广东±800kV直流输电工程江门换流站桂林电力电容器有限责任公司高压直流滤波电容器的安装,结合现场工程实践,总结出±800kV特高压换流站悬吊式直流滤波电容器安装工艺,并就如何根据施工环境,利用施工机械,通过优化措施,提出满足施工技术要求的完善的施工方案,为特高压直流输电工程同类设备的施工安装提供参考和借鉴。  相似文献   

5.
特高压直流输电(Ultra high voltage direct current transmission,UHVDC)以输电容量大、线损少、输送距离远等显著优势成为解决我国能源与需求呈逆向分布问题的重要方案。然而,由于其输送距离远,跨越区域的地形和气候复杂,使线路沿线土壤电阻率分布不均匀。本文基于某±1 100 kV 特高压直流输电工程,分析了直流线路过电压机理,并采用电磁暂态计算软件PSCAD,针对直流线路不同平均土壤电阻率和四季实际土壤电阻率进行过电压仿真分析。结果表明,土壤电阻率会对换流站的反射产生影响,以及实际土壤电阻率会使最大过电压位置向送电侧偏移。通过优化线路避雷器的安装位置使过电压的抑制效果更优,为特高压直流输电工程的发展提供重要参考。  相似文献   

6.
李松 《广东科技》2014,(2):61-62
针对糯扎渡电站送电广东±800kV直流输电工程江门换流站桂林电力电容器有限责任公司高压直流滤波电容器的安装,结合现场工程实践,总结出±800kV特高压换流站悬吊式直流滤波电容器安装工艺,并就如何根据施工环境,利用施工机械,通过优化措施,提出满足施工技术要求的完善的施工方案,为特高压直流输电工程同类设备的施工安装提供参考和借鉴。  相似文献   

7.
雷电侵入波过电压是变电站发生事故的主要原因之一,500 kV的变电站是电力系统的枢纽,一旦发生雷击事故,必然照成大面积停电,引起严重后果。选择合适的雷电流、输电线路、杆塔,避雷器等模型,通过ATP-EMTP仿真软件对某500 kV HGIS变电站进行准确的仿真计算,避雷器的保护距离应尽量减少,条件允许情况下应在母线加装一组避雷器,本文的防雷保护措施对今后500 kV HGIS变电站防雷和避雷器的配置有一定的参考价值。  相似文献   

8.
利用国际通用的图形化电磁暂态计算程序ATP-EMTP对1 000 kV特高压系统雷击过电压进行了建模与仿真研究,分别建立了杆塔、输电线路、避雷器模型;进行了雷击杆塔及其母线、杆塔接地电阻对雷电过电压影响,以及变电站母线处安装避雷器对过电压的影响、串联电感对雷电过电压影响的仿真研究.仿真计算表明了避雷器在变电站防雷过程中的重要作用,还给出了过电压的分布、变化规律,为高压变电站雷击保护研究及其优化设计提供了有价值的参考依据和可行的工程方法.  相似文献   

9.
阐述了500 kV变电站二次回路系统的防雷措施和弱电设备防雷产品的技术参数,并对雷击电磁脉冲入侵弱电设备的雷害机理进行了讨论,给变电站的二次回路系统防雷提供了技术上的参考和建议.  相似文献   

10.
10KV配电线路防雷保护间隙的设计   总被引:2,自引:1,他引:1  
10kV配电线路是电力系统中较靠近用户的一级,绝缘水平较低,且中低压架空线路一般无特别的防雷措施。本文在研究10kV绝缘导线的断线机理基础上,利用ANSYS软件仿真分析防雷保护间隙与绝缘子配合时遭雷击过电压放电过程及电压等级分布,确定了防雷保护间隙的大小。所设计的防雷保护间隙在非雷击状态不承载电压,雷击时先于绝缘子可靠放电,保护了绝缘子不受烧伤和击穿,保证了线路在雷电过电压下的安全运行。  相似文献   

11.
500kV同杆双回输电线路耐雷性能分析   总被引:4,自引:0,他引:4       下载免费PDF全文
为了减少线路走廊占地,采用同杆架设双回输电线路将成为500kV主干网架的发展趋势,利用电磁暂态计算程序(EMTP)、击距法对500kV同杆双回输电线路耐雷性能进行研究。在分析反击耐雷性能时,考虑雷击塔顶时导线上交流周期电压的随机性,提出利用统计法分析,通过计算得到雷击塔顶导线上交流周期电压值不同时。线路的耐雷水平相差较大。在分析绕击耐雷性能时,充分考虑了风速的影响因素,对击距法进行了改进,并通过编程计算得到风速对保护角和绕击率都有影响的结论。  相似文献   

12.
光伏直流送出线发生双极故障时会导致输电线路两端换流器快速闭锁,为保障系统稳定运行,保护装置需在换流器闭锁前快速准确识别故障.为此,提出一种基于两端电流极性变化的相角分布光伏直流送出线保护方案.该方案利用相角值描述故障前后一个数据窗线路两端暂态电流极性的异同,并以此分类构造保护判据,可以准确快速地判断出光伏直流送出线区内外故障.最后,在MATLAB/Simulink中搭建1 MW/±30 kV集中型光伏直流升压外送系统模型进行仿真验证.结果 表明,该方案能够快速可靠识别光伏直流送出线上的故障类型,且具有较好的抗干扰和抗过渡电阻能力.  相似文献   

13.
随着"直流电网"概念的形成,传输距离的增长使得架空线成了构建直流传输网络的最佳选择。相较电缆线路,架空线故障率更高,更易发生断线故障。基于多端柔性直流环网拓扑结构,对直流网络中部分线路断开后换流站及相连线路的暂态特性进行了研究,阐述了故障后产生直流侧过电压以及非故障线路过电流的机理;以抑线路过电流水平、加快系统恢复速度为目的,提出改进后的电流控制器模型。最后,基于PSCAD/EMTDC搭建了四端环网模型,验证了提出的控制策略的有效性,能够明显的抑制线路过流峰值和加快直流网络恢复速度。  相似文献   

14.
将三相不对称的交流电源用正序和负序电压表示,用傅里叶分析方法计算了正序和负序电压传递到直流侧的谐波电压的规律,将这一理论应用到基于感应滤波的直流输电系统,计算在交流系统故障时,直流侧电压谐波的数学表达式,比较在同样的交流系统故障条件下,基于感应滤波的直流输电系统在抑制直流侧谐波幅值方面优于传统的直流输电系统,最后参考实验室基于感应滤波的直流输电系统模型,对输电系统在交流系统故障下的直流电压谐波进行了动模实验.结果表明,由于在感应滤波换流变压器的第三绕组接入2,11,13次LC滤波器,使直流电压中含量高的低次谐波大大减少,直流输电系统谐波不稳定得到一定的抑制。  相似文献   

15.
为有效抑制故障消除后引起的HVDC受端系统过电压,提出了一种调相机与逆变侧关断角协调控制的策略,在逆变侧关断角固定的常规控制系统中加入无功调节器(QPC),通过调节逆变侧关断角实现对换流站的无功控制,同时协调整定调相机无功调节器和直流控制系统无功调节器的参数。基于PSCAD/EMTDC搭建含调相机的HVDC系统数值仿真模型,仿真结果表明,提出的调相机与逆变侧关断角协调控制策略可有效降低故障后HVDC受端系统过电压,加快交流系统电压的恢复时间。  相似文献   

16.
针对现有的雷电屏蔽理论--电气几何模型(EGM)和先导传播模型(LPM)的不足,对雷击物理过程和输电线路绕击分散性进行了研究.提出了对输电线路雷电屏蔽及其模拟理论的一些新认识,建立了考虑放电分散性的输电线路雷击仿真模型,将此模型用于500kvZM1-39型线路在平原地段的绕击率的计算,计算结果与运行情况比较相符.  相似文献   

17.
特高压直流设备金具作为设备间相互连接的重要节点,其一旦在地震中发生损坏,将直接导致设备电气功能的丧失。本文通过对±800kV特高压直流换流站典型管母支撑滑动金具开展低周反复加载试验,研究了该类型金具的抗震性能;通过建立复合支柱绝缘子与管母线耦联体系有限元模型,分析了不同地震加速度等级输入下绝缘子和滑动金具的地震响应;通过建立连接单元释放单向位移和单向转动的限制以模拟滑动金具在实际电气设备回路中与管母的连接,提出了将滑动金具等效为非线性弹簧的计算方法,为减小地震作用下设备的耦合效应,得到了滑动金具滑动槽长度设计值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号