首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
针对滞回力学特性、低周疲劳性能以及耗能减震能力,进行了3组采用低屈服点钢BLY160的剪切型阻尼器的拟静力试验。试验选用2种尺寸型号的试件并采用了4种不同的加载方案,对比分析了不同加载历史下软钢的应变强化现象及低周疲劳性能,考察了阻尼器构件关键参数腹板宽厚比以及加劲肋尺寸的影响。试验结果表明:BLY160低屈服点钢材随等效塑性应变的累积有明显的循环强化现象,采用BLY160低屈服点钢的剪切型阻尼器初始刚度大,屈服位移小,变形能力强,具有良好的滞回性能和稳定的耗能特性。  相似文献   

2.
研制了一种同时布置体内无黏结预应力筋和外置金属阻尼器的新型自复位约束砌体墙,通过拟静力试验研究了该自复位墙在低周反复荷载作用下的滞回性能,重点探明了预应力筋初始预应力、金属阻尼器屈服荷载大小对其耗能性能的影响,最后基于试验结果建立了数值分析模型.研究表明:该自复位约束砌体墙滞回曲线呈"旗形",在较大位移下未出现明显的损伤,且在加载及卸载过程中没有明显的强度和刚度退化;随着预应力筋初始预应力的增加,墙体的自复位性能增强,但其耗能能力会降低;随着金属阻尼器屈服荷载的增大,墙体的耗能能力增强,但会产生少量的残余变形;数值模拟结果与试验结果吻合较好,表明本文所提出的分析模型能较好地模拟该自复位约束砌体墙的力学行为.  相似文献   

3.
为满足结构理想延性构件的7项性能目标,提出一种新型限制力装置的完整构造和设计方法。设计4个新型限制力装置试件,完成大位移滞回加载试验和低周反复荷载试验,研究新型限制力装置的屈服荷载、屈服位移、弹性刚度、极限荷载、极限位移、屈服后刚度、延性系数、滞回曲线、等效黏滞阻尼系数和骨架曲线。研究结果表明:新型限制力装置具有抗压抗拉承载力、稳定的屈服平台和饱满的梭形滞回曲线;限制力由最大轴向位移确定;等效黏滞阻尼系数随着变形增大而增大;骨架曲线为双线性;特殊构造具有拉压先后失效特征;新提出的限制受拉位移构造提供了二道防线;新型限制力装置可应用于空间结构以满足双向承受轴力、抗连续倒塌和消能减震功能要求,也可作为一种新型屈曲约束支撑和消能减震装置。  相似文献   

4.
新型开洞软钢板阻尼器的理论及试验研究   总被引:1,自引:0,他引:1  
设计、制造了一种用于结构振动控制的新型高性能开洞软钢板阻尼器.该阻尼器主要通过开洞核心耗能板的弯曲塑性变形来耗散振动能量.首先,利用有限元方法研究了核心耗能板的应力分布,并通过理论推导得到了核心性能参数的计算公式;然后,采用单调加载和往复加载试验,验证了阻尼器的滞回耗能性能.研究结果表明:开设合理的鼓形洞口能够优化耗能板上的应力分布,并且不对其屈服力产生影响;推导出的核心性能参数理论公式能够较为准确地反映新型开洞软钢板阻尼器的工作性能;该阻尼器具有饱满的滞回曲线,并且在大位移加载时,等效黏滞阻尼比均可达到30%以上,表现出良好的滞回耗能和低周疲劳性能.  相似文献   

5.
软钢阻尼器加固震损再生混凝土框架振动台试验   总被引:1,自引:0,他引:1       下载免费PDF全文
对震损8层再生混凝土框架模型采用环氧树脂注胶并增设软钢耗能装置,通过振动台试验研究了震损框架加固后的地震响应以及软钢阻尼器的减震效果.基于试验结果对试验模型的震损特征、动力特性、加速度及位移响应进行分析,探讨了软钢阻尼器对主体框架的刚度及耗能贡献.试验结果表明:在强震激励下软钢阻尼器的滞回耗能效应能减小层间刚度退化,同时加速度响应能得到有效控制.软钢阻尼器沿楼层的屈服次序从中部楼层开始,逐渐向上部及底部楼层发展,中部楼层的软钢阻尼器变形增长较快,耗能较大.  相似文献   

6.
为了实现分阶段耗能的目标,基于Q235钢和低屈服点钢2种不同耗能材料,设计了一种新型开孔式耗能装置.根据不同的耗能材料和抛物线开孔方式,构建了具有不同屈服位移的2种耗能钢板,继而组装成整体耗能装置,实现两阶段耗能目标控制.针对2种耗能钢板进行单调加载试验,考察了不同参数状态下单片耗能钢板的屈服机理,给出了单板模型试件的荷载-位移曲线、屈服位移和屈服荷载.对耗能装置开展低周反复加载试验,揭示其两阶段耗能机理与破坏模式,得到耗能装置的滞回曲线、骨架曲线、等效黏滞阻尼比和等效刚度退化曲线.试验结果表明,新型两阶段耗能装置的滞回曲线饱满,耗能性能优越稳定,分阶段耗能特点明显.  相似文献   

7.
采用拟静力法制作了4个直榫木梁,分别对不同竖向荷载作用下有无碳纤维布加固时梁的抗震性能进行了分析。试验得出水平位移和水平力的滞回曲线、骨架曲线及刚度退化曲线。试验结果表明:碳纤维布加固能够显著降低节点位移,降低幅度可达20.1%,推迟达到屈服位移的时间,同时节点承受的水平极限荷载可增大71.9%,大幅度提升结构的安全性。竖向荷载越大,碳纤维布加固效果越明显。  相似文献   

8.
减隔震技术是当前抗震研究的热点,其中,软钢阻尼器是结构被动控制中耗能减震装置的一种。软钢阻尼器在地震时,通过软钢发生塑性屈服滞回变形而耗散输入结构中的能量,从而达到减震的目的。由于构造简单,力学概念明确,技术性能可靠且易实现,软钢阻尼器已成为较多应用于高层建筑抗震的减震技术之一。本文利用NosaCAD有限元分析软件,对某高层建筑进行了非线性时程分析,并对该高层建筑应用软钢阻尼器进行设计,计算中用斜向阻尼器进行模拟。基于9度罕遇地震进行设计,通过分析结构的位移响应、损伤发展以及阻尼器的滞回曲线等性能指标,验证了软钢阻尼器对于高烈度地震区高层建筑减震的作用。  相似文献   

9.
为了研究地震作用下T形配钢钢骨混凝土柱的滞回特性和恢复力特性,前期已完成了12根T形配钢钢骨混凝土柱的拟静力试验,得到了其在低周反复荷载作用下的滞回曲线和骨架曲线;基于上述试验的结果建立适合T形配钢钢骨混凝土柱的三折线骨架曲线模型,并对骨架曲线模型及各关键点、正负向加载和卸载刚度退化规律、滞回规则进行数学描述.将实测骨架曲线与模型骨架曲线进行比较,吻合较好.  相似文献   

10.
振动台模型试验往往由于振动台的尺寸限制采用缩尺模型,而结构中阻尼器根据相似比例缩尺后尺寸小、制作难,性能难以确定。为研究小尺寸金属阻尼器在振动台地震波作用下的性能,对一种用于1/5比例振动台模型试验的小尺寸金属阻尼器进行研究,对两种型号的试件进行了反复加载试验及疲劳试验,并进行有限元模拟分析。试验及分析结果表明,有限元模型合理有效,可用于小尺寸金属阻尼器的设计分析;试件在反复荷载作用下,塑性主要集中于翼缘和腹板与连接板相连处,而加载频率对试件的承载力影响不大,加载频率的加快则会使试件的滞回关系出现捏缩现象;特定疲劳荷载作用下试件的性能较好;小尺寸阻尼器性能难以预计,需要根据其试验结果来确定其屈服位移和峰值位移,以用于整体结构振动台试验分析。小尺寸金属阻尼器的试验方法和分析方法可为小尺寸阻尼器的研究提供一定的参考。  相似文献   

11.
为了研究型钢混凝土(SRC)L形柱—混凝土梁框架节点的受力性能,设计了4个试件进行低周反复加载试验,揭示了其受力破坏机理;获取了节点受力全过程的荷载—位移滞回曲线和荷载—应变滞回曲线,分析了其变形能力和能量耗散能力.结果表明:反复荷载作用下SRC异形柱框架角节点的抗震性能良好,荷载—位移滞回曲线的滞回环饱满、对称,其抗...  相似文献   

12.
制作了3个自密实混凝土加固框架中节点,采用MTS伺服加载系统进行自密实混凝土加固节点的拟静力试验,研究不同轴压比对自密实混凝土加固节点抗震性能的影响.3个加固试件的轴压比分别为0.1,0.2,0.3.通过对试件破坏过程、新老钢筋应变、荷载位移滞回曲线等试验结果的分析得到:随柱端轴压比的增加,柱端压力对节点核心区的约束作用逐渐增大,加固节点的抗剪承载力、耗能能力、结构刚度等随之提高,而加固节点的极限位移、位移延性系数随之降低.  相似文献   

13.
铅挤压阻尼器的研究   总被引:5,自引:0,他引:5  
利用铅的塑性变形能力,设计制作了铅挤压阻尼器.根据金属挤压理论,分别基于解析法和有限元法提出了分析铅挤压阻尼器力学特征的方法,并建立了相关的计算公式.试验研究了铅挤压阻尼器在不同位移、不同频率组合下的力学性能.研究结果表明,铅挤压阻尼器的屈前刚度大、滞回曲线丰满,在小位移加载时,阻尼比高达0.5以上;铅挤压阻尼器的阻尼性能与加载频率无关,工作性能稳定.该阻尼器可以作为工程结构风振和抗震控制的消能装置.  相似文献   

14.
以外钢管材质、加载方向及中空夹层截面为变化参数,进行了 4个圆端形不锈钢管(concrete-filled round-ended stainless steel tubular,CFRST)和2个圆端形普通钢(concretefilled round-ended carbon steel tubular,CFRT)混凝土桥墩试件的往复加载拟静力试验. 分析了试件的破坏形态、滞回性能、骨架曲线、延性系数及耗能等. 试验结果表明:圆端形不锈钢管混凝土桥墩试件的破坏形态均为墩底外钢管的鼓曲及底部混凝土的局部压溃,各试件的滞回曲线较为饱满,无明显捏拢现象,耗能能力及延性均较好;与圆端形钢管混凝土桥墩试件相比,圆端形不锈钢管混凝土桥墩试件的峰值荷载及初始刚度基本不变,但延性及耗能能力增加,刚度退化程度减小;与圆端形实心不锈钢管混凝土桥墩试件相比,圆端形中空夹层不锈钢管混凝土桥墩试件沿强轴加载时峰值荷载、初始刚度、延性及耗能能力均增加,而沿弱轴加载时由于内钢管平直段发生向内凹曲,其峰值荷载及初始刚度虽仍有增加,但延性及耗能能力略有降低. 给出了此类桥墩水平承载力的计算方法,计算结果与拟静力试验结果吻合较好.  相似文献   

15.
为研究钢-混凝土组合结构中PBL(Perfobond Leiste)抗剪连接件在疲劳荷载作用后的力学性能退化规律,设计并制作了9个PBL连接件的推出试件分别进行静力和疲劳试验.其中3个试件为静力破坏试验,重点关注了试件的破坏模式、极限承载力及荷载-滑移曲线.其余6个试件为在经历一定疲劳荷载循环次数后进行静力破坏试验,以疲劳循环次数,疲劳荷载比为参数变量,得到在不同疲劳参数作用后,PBL连接件的极限承载力、残余滑移量、抗剪刚度等力学性能的变化情况.研究结果表明,PBL连接件具有较好的延性,其静载和疲劳后静载的破坏模式均为一侧贯穿钢筋剪断、另一侧贯穿钢筋屈服.疲劳荷载比对PBL连接件剩余承载力影响较大,在同样经历了300万次的循环加载后,荷载比为0.5的极限承载力基本没有下降,而荷载比为0.7的承载力仅为初始静载试验的76.1%;在相同荷载比(0.6)情况下,PBL连接件的承载力随疲劳加载次数呈先慢后快的非线性退化趋势.相对于荷载比而言,残余滑移量对疲劳循环次数更为敏感.抗剪刚度在整个疲劳加载过程中基本保持不变.  相似文献   

16.
通过9个型钢混凝土L形柱空间角节点模型试件的低周反复加载试验,以揭示该类节点的抗震性能指标.观察了其破坏过程及形态、得到荷载-位移滞回曲线、骨架曲线及特征点参数等抗震性能指标,并对柱截面配钢形式、轴压比、加载角度以及连接梁的结构形式4个变化参数对抗震性能的影响规律进行了深入分析.结果表明:型钢混凝土L形柱空间角节点发生了伴随扭转的节点核心区破坏;滞回曲线饱满、位移延性系数较大、耗能能力强;强度、刚度衰减退化过程缓慢,表现出较好的抗震性能.  相似文献   

17.
为研究压弯剪扭复合受力下实腹式型钢混凝土L形柱的抗震性能,以扭弯比、肢高肢厚比为变化参数,设计了6个实腹式型钢混凝土L形柱试件,在恒定轴力反复弯剪扭的加载试验,观察试件的破坏过程和破坏形态,获取扭矩—扭转角滞回曲线和荷载—位移滞回曲线以及试件的开裂、屈服、峰值和破坏等特征点参数。基于试验数据,详细分析了压弯剪扭复合受力下柱的极限承载力、位移延性、层间侧移角、能量耗散、强度及刚度退化等抗震性能指标。结果表明,低周反复压弯剪扭实腹式型钢混凝土L形柱的破坏形态主要表现为弯曲、弯剪和弯扭破坏;其滞回曲线呈中间捏拢的非对称反S形,扭矩—扭转角滞回曲线在峰值荷载后出现"荷载跌落"现象;位移延性系数大于扭转延性系数,但二者均小于3.0;破坏时的侧移角普遍小于扭矩1/50,低于我国现行抗震设计规范的要求;试件耗能前期以扭转耗能为主,后期以弯曲耗能为主。  相似文献   

18.
制作5根薄壁带肋方型截面钢桥墩试件,采用MTS伺服加载系统进行此类试件的拟静力试验,研究不同横向加劲肋间距和混凝土填充率对薄壁带肋方型截面钢桥墩抗震性能的影响.通过对试件破坏过程、荷载位移滞回曲线和骨架曲线等试验结果的分析得到:随着底部塑性铰区域横向加劲肋间距的减小,试验采用的钢桥墩试件的承载力和刚度有所提高;其它相同条件下,随着混凝土填充率的增加,管内混凝土对外围薄壁钢管发生局部屈曲的约束作用逐渐增大,桥墩的水平承载力、耗能能力、结构刚度、极限位移和位移延性系数等抗震性能指标也都随之提高.  相似文献   

19.
为研究长行程屈曲约束支撑(buckling restrained brace,BRB)的抗震性能,针对不同有效屈服长度比的屈曲约束支撑进行了拟静力试验研究,对比分析了试件的滞回曲线、骨架曲线、延性系数、耗能能力、刚度退化和强度退化等性能指标.结果表明:高有效屈服长度比能够有效提高试件的极限承载力和极限位移;长行程屈曲约束支撑的延性系数为2.54~3.60,延性较好;有效屈服长度比对长行程屈曲约束支撑的刚度退化性能影响不大;高有效屈服长度比的长行程屈曲约束支撑,强度退化更稳定;抗震性能有所提高.  相似文献   

20.
为研究铝合金板式节点的受弯滞回性能,并与静力性能进行比较,完成了4个足尺试件的滞回加载及单调加载试验,并采用通用有限元软件ABAQUS对试验加载全过程进行数值模拟,得到了铝合金板式节点的破坏模式、弯矩-转角关系及耗能能力.采用分配梁对两杆进行对称加载,节点域为纯弯段.研究结果表明铝合金板式节点为典型半刚性节点,根据受力过程可分为弹性阶段、螺栓滑移阶段、孔壁承压阶段和破坏阶段,并得到节点弯矩-转角关系曲线.节点破坏模式为杆件净截面拉断,裂缝由杆件端头最外排螺孔处开始扩展.节点在破坏前无明显预兆,为典型脆性破坏,荷载-位移曲线没有下降段.节点滞回加载的骨架曲线与单调加载曲线接近,但滞回加载过程节点的累积损伤,导致节点延性低于单调加载.增加螺栓数量可改善节点耗能性能,使滞回曲线更加饱满.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号