首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文综述了铁铜分离的一般方法,并根据国内外氯化焙烧现状,结合铜渣特点,提出氯化焙烧法分离铜渣中铁铜的优势:可以在中温条件下进行选择性氯化,完成铁铜的分离过程;氯化焙烧过程是在氧化性气氛下进行的,铜渣中硫元素可以SO2的形式溢出;铜渣中的铜以CuCl2形式挥发,可以在反应器冷端凝结,铁留在渣中,实现了铜渣中铁铜的共同回收。  相似文献   

2.
采用氯化焙烧可有效实现铜渣中含铜、铁物相CuO和Fe3O4的选择性氯化挥发分离,氯化剂种类不同铜氯化挥发过程特异性明显.FeSO4·7H2O为添加剂,NaCl和CaCl2为氯化剂分别对CuO进行氯化焙烧时,物料失重可分为主要失水阶段、微量失水阶段和氯化失重阶段三部分,其中氯化失重部分反应属一级反应.CaCl2焙烧起始反应温度较NaCl较低为315.9℃,且其焙烧反应活化能4.826KJ/mol低于NaCl 6.001KJ/mol.影响CuO氯化挥发效果的主要因素为焙烧温度,焙烧温度1130℃、焙烧时间60min、氧气流量0.2L/min、CaCl2加入量1.6(CaCl2与铜渣质量比)和FeSO4·5H2O加入量4.42(FeSO4与铜渣质量比)条件下,焙烧物料失重率最大达62.3%,基本可实现物料中铜的氯化挥发,同时铁氯化损失率较小,可实现铜铁氧化物的选择性氯化挥发分离.  相似文献   

3.
采用电感耦合等离子体发射光谱仪、光学显微镜、X射线衍射仪等对诺兰达铜渣的化学成分、微观结构和物相组成进行了研究,并采用"焙烧-浸出"工艺探索铜渣资源化利用的途径.结果表明,诺兰达铜渣的主要矿相为铁橄榄石、磁铁矿、铜锍、玻璃相和少量金属铜.在680℃焙烧4 h后,采用2mol/L硫酸于70℃浸出2h后可以达到良好的浸出效果,使铜的浸出率达到92%以上.  相似文献   

4.
含钼铜精矿氧化焙烧-浸出分离钼研究   总被引:1,自引:1,他引:0  
四川攀西地区的含钼铜精矿中,由于钼、铜矿物组成复杂,共生关系紧密,提出了氧化焙烧-浸出工艺进一步分离钼。将试样置入焙烧炉中进行氧化焙烧,使硫化物转化为CuO、MoO3、Fe2O3等氧化物后;添加NaOH、H2O与MoO3反应生成可溶性Na2MoO4,浸出渣作为铜精矿产品。研究结果表明:铜、钼等以氧化物形式赋存于焙烧矿中,氧化焙烧矿中的硫含量较低为0.53%,硫以SO2气相形式挥发;在焙烧温度650℃、焙烧时间120 min、氢氧化钠用量为30%、浸出温度60℃、浸出时间120min、浸出液固比2∶1的综合条件下,钼的浸出率为94.24%,铜精矿(浸出渣)中铜的质量分数为24.27%,钼分离效果明显。  相似文献   

5.
目前国内处理铜阳极泥的流程可归纳为四类。一类是传统的火法处理流程:将阳极泥经脱铜、脱硒、还原熔炼、氧化精炼,然后电解精炼得成品金银。第二类是选冶联合流程:先用氯化钠作氧化剂,浸出铜硒,后用选矿方法富集得银精矿,然后一次熔炼成金银合金阳极板,再电解精炼得成品金银。第三类是半湿法流程:阳极泥经硫酸化焙烧脱硒;稀硫酸浸铜;脱铜渣氨浸分银,水合肼还原沉淀银粉,铸阳极电解;分银渣硝酸分铅后再氯化分金,SO_2还原金粉,铸阳极板电解。第四类是全湿法流程:先将阳极泥水洗,过筛,过滤,然后用稀硫酸浸出脱铜,脱铜渣氯化浸出,氯化液有机萃取,草酸还原得海绵金,或氯化液用二氧化硫或草酸直接还原获粗  相似文献   

6.
针对某难浸铀矿石,采用“氯化焙烧-硫酸浸出”工艺进行处理提取铀、铜、银。研究结果表明,最佳氯化焙烧实验条件为氯化钠用量6%,氯化焙烧温度 460 ℃,氯化焙烧时间2 h,焙烧液固比0.2∶1。对氯化焙烧后的矿样进行硫酸浸出,浸出条件为:硫酸浓度30 g/L、浸出时间30 min、浸出温度70 ℃、液固比2∶1,此时金属离子铀、铜、银的浸出率分别为铀85.08%、铜95.82%、银91.80%。  相似文献   

7.
本文研究了锡中矿还原氯化挥发焙烧过程中,氯化温度、时间、气氛、还原剂和氯化剂用量,球团碱度和添加剂等因素对炉料中锡、铅、铜、锌和砷等挥发率的影响,并给出了焙烧的最佳条件。通过体系中有关化学反应的热力学计算、对金属氯化挥发的机理进行了分析。  相似文献   

8.
工业铜渣和软锰矿在硫酸介质中经氧化还原,得到硫酸铜和硫酸锰混合溶液,净化过滤后,用氨与碳酸氢铵混合溶液分离锰得到的铜氨溶液,通过控制电解技术参数电解制得铜。研究表明在50℃、电流密度为150 A/m2条件下可以得到2#阴极铜。  相似文献   

9.
对高炉灰在直接还原焙烧-弱磁选工艺中用作印尼某海滨钛磁铁矿还原剂的可行性及其机理进行研究.结果表明,以萤石为添加剂的条件下,高炉灰可代替煤做还原剂,通过高炉灰与萤石的共同作用,可以在直接还原过程中提高还原铁粉中铁的回收率及品位并降低TiO2质量分数,同时回收高炉灰中铁.三种不同产地高炉灰还原效果的比较表明,高炉灰性质对还原效果有影响.在相同用量条件下,津鑫高炉灰( JX)还原效果最好;在JX高炉灰用量30%、萤石用量10%、焙烧温度1250益以及焙烧时间为60 min时,焙烧产物通过两段磨矿和两段磁选,最终得到最佳的还原铁粉中铁品位为91.28%,TiO2质量分数降至0.93%,包括海滨砂矿和高炉灰中铁的铁总回收率达到89.19%.  相似文献   

10.
采用了氯化钙氯化焙烧-水浸法提取白云母中铷的方法.通过氯化焙烧热重-差热分析曲线可知,用氯化钙混合白云母进行氯化反应的温度要比用氯化钠低100℃左右,且用CaCl2氯化比NaCl更有效率.接着考察了氯化焙烧温度对铷提取率的影响,结果表明,只有当氯化焙烧温度提高至800℃后,才可能取得明显的铷的氯化效果,铷的提取率即达96.71%,随氯化焙烧温度升高,铷的氯化速率不断增大,特别是800℃后,铷的氯化速率明显增大,这说明高温有利于铷的氯化焙烧.最终对白云母与氯化钙氯化焙烧过程进行了动力学研究.结果表明,三维界面反应方程能较好地描述该氯化焙烧反应体系,根据阿仑尼乌斯公式计算出来的活化能为42.22kJ·mol-1,说明白云母和CaCl2的氯化过程的确受界面化学反应控制.  相似文献   

11.
本文根据0.2米~2的沸腾焙烧炉对铜、铅、锌复合硫化精矿的氧化焙烧和硫酸化焙烧的试验数据,进行了化学平衡计算、分析;提出了实现含铅高的复合硫化精矿高温氧化焙烧的正常作业条件;对下一步的铜、铅、锌分离进行了探讨;并参考文献资料,提出了有关复合硫化精矿直接熔炼的可行途径。  相似文献   

12.
含锗锌氧粉氯化焙烧热力学分析   总被引:2,自引:0,他引:2  
对含锗锌氧粉与固体氯化剂NaCl、CaCl2 和NH4 Cl的化学反应热力学数据进行了计算和分析 ,结果表明NH4 Cl和NaCl是在低温条件下氯化焙烧含锗锌氧粉实现锌、锗分离的有效氯化剂 ,为该工艺的实验研究提供了理论依据  相似文献   

13.
高磷褐铁矿的钠盐强化还原焙烧—磁絮凝分离   总被引:1,自引:0,他引:1  
研究高磷褐铁矿工艺矿物学的特性,开发钠盐强化还原焙烧—磁絮凝提铁脱磷的新工艺.采用光学显微镜、XRD和EDAX分析研究焙烧前后相关产品的微观特征,并对精矿TFe品位以及P含量进行分析.研究结果表明:褐铁矿主要为针铁矿和赤铁矿的复合矿物;磷主要以氟磷灰石(Ca5(PO4)3F)的形式存在.在温度为1 050℃,m(煤)/m(矿)为3:20的条件下,还原120min后焙烧矿样中铁粒径小,磷铁分离困难;当添加10%的Na2CO3后,焙烧矿中铁粒径粗化,金属铁的衍射峰值强度增强.还原矿样磨至<26 μm粒级含量约占90%时,采用磁絮凝可制备出TFe 69.87%、含磷0.28%、铁回收率为78.18%的铁精矿.添加Na2CO3可提高FeO的还原反应活度,优化还原过程中传热和传质条件,强化氧化铁的还原;磁絮凝则强化了细粒级磁性矿物的回收.  相似文献   

14.
铜渣在不同煅烧温度的晶相结构   总被引:3,自引:0,他引:3  
将铜渣分别于850,900,950,1 000,1 050℃进行了煅烧,探讨铜渣在不同温度和不同煅烧时间下的晶体变化,为铜渣的综合利用提供可靠的基础数据.采用XRD法和SEM/EDX法表征了铜渣在不同煅烧温度和不同煅烧时间下的晶相结构和显微结构.实验结果表明:随着煅烧温度的提高和煅烧时间的延长,铜渣中组分晶相发生如下转变过程:2FeO·SiO2+0.5O2→α-Fe2O3+SiO2和Fe3O4-Fe2O3→αFe2O3.氧化煅烧处理可以实现铜渣中主要晶相铁橄榄石离解,氧化铁的富集和析出.  相似文献   

15.
采用氯化铵氯化—二酰异羟肟酸萃取法从粉煤灰中提取锗.即用氯化铵氯化粉煤灰中的锗,使锗以氯化物的形式挥发富集,用浓度小于6 mol/L的盐酸溶液吸收富集水解GeCl4得到氧化锗.煤灰中锗的氯化适宜条件为向粉煤灰中加入其重量20%的NaHCO3焙烧1 h,往焙砂中加入粉煤灰重量15%的氯化铵,在400℃下焙烧90min,锗的氯化回收率≥81.5%.用1.5%H2SO4(固液质量比为1∶2)进行逆流浸取氯化焙渣中的锗,调节浸出液pH=1.0,以二酰异羟肟酸(DHYA)为萃取剂,异辛醇为溶剂,磺化煤油为稀释剂,在VO/VA=1∶4、CDHYA=0.5mol/Lt、=8 min的条件下进行三级逆流萃取酸浸出液中的锗,锗总萃取率≥99.5%;用2.5 mol/L的NH4F进行二级反萃取锗,反萃率≥99.5%.氯化铵氯化焙烧—DHYA萃取法提取粉煤灰中锗的综合回收率≥95%.  相似文献   

16.
研究了浸锌渣还原焙烧分选综合回收有价元素新工艺,并采用电子显微镜、能谱仪和扫描电镜等分析了还原焙烧渣中金属的性质.研究结果表明当还原温度为1100 ℃、还原时间为150 min时,还原焙烧渣中铁的金属化率、镓的回收率、锌的挥发率分别为95.10%,89.10%,98.42%.还原焙烧渣经破碎、磨矿、磁选分离获得的磁性产物中含Fe 90.16%,Ga的质量浓度为2164 g/t;Fe,Ga的回收率分别为87.78%,92.42%;还原焙烧渣中金属铁是镓的主要载体矿物相,镓具有明显的亲铁特性;镓在金属铁中的富集是实现浸锌渣在还原焙烧分选过程中高效分离的基础.  相似文献   

17.
借助X射线衍射、扫描电镜和能谱分析对铜渣碳热还原过程中的物相变化及铅锌脱除规律进行研究,并进一步分析铅锌脱除机理.研究结果表明:铜渣中的铅主要赋存于玻璃体中,而锌主要分布在铁橄榄石相中.碳热还原过程中焙烧温度的升高及时间的延长均促使铜渣中主要物相铁橄榄石分解为金属铁和二氧化硅固溶体,同时有效提高铅锌脱除率.铅脱除率与铁...  相似文献   

18.
为研究菱铁矿在强还原气氛下加热过程中铁矿物的转化过程和规律,采用热重分析、X射线衍射和扫描电镜等手段研究了嘉峪关某菱铁矿石在煤基直接还原过程中菱铁矿的热行为和不同条件下焙烧产物中铁矿物的存在形式等.结果表明,菱铁矿在煤基直接还原条件下转化为金属铁的历程为FeCO3→Fe3O4→FeO→Fe.转化过程分为菱铁矿分解和铁氧化物还原两个阶段;热分解阶段在556.6℃时基本结束,最终产物为Fe3O4;铁氧化物的还原阶段在556.6℃以后、1200℃时完全结束,最终产物为金属铁.  相似文献   

19.
氰化金泥低温焙烧预处理冶炼工艺是在湿法冶金的基础上,采用低温硫酸焙烧预处理工艺,使铜、锌、银等生成可溶于水的硫酸盐,并根据金在氯化环境中电位变低的特性,实现贵贱金属的分离.该工艺不仅能生产出高品质的金、银锭(纯度99.9%以上),而且金、银的综合回收率高达99.95%以上,同时,铜、铅等有价金属也能得到综合回收.该工艺具有投资少、生产成本低、经济效益高等优点.  相似文献   

20.
利用化学热力学原理和热力学函数的数据,通过计算分析氯化铵焙烧氯化氧化镧制备无水氯化镧的可行性和技术关键。结果表明:氯化铵焙烧氯化氧化镧制备无水氯化镧在热力学上是可行的;氯化反应的起始温度为420.43 K,反应进行完全的最低温度约为457.83 K;当T≥554.02 K时,氯化铵抑制La Cl3(s)水解的反应开始进行,T≥724.28 K时,氯化铵彻底抑制La Cl3(s)水解;NH4Cl(s)焙烧氯化La2O3(s)生成La Cl3(s)的理论温度为573 K左右;La OCl(s)是无水氯化镧中的主要杂质,使用2倍理论量的氯化铵是提高氯化率和无水氯化镧含量的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号