首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
应用于超级电容器的碳纳米管电极的几个特点   总被引:30,自引:0,他引:30  
为拓展碳纳米管的实际应用 ,对碳纳米管应用于超级电容器的电极材料的特点作了深入分析。碳纳米管电极具有独特的孔隙结构和高比表面积利用率 ;碳纳米管表面可以形成丰富的官能团 ,具有较好的吸附特性。此外 ,作者提出了采用酸处理或球磨工艺打断碳纳米管、提高其内腔利用率的方法。可以预料 ,碳纳米管在这一领域将得到广泛应用  相似文献   

2.
作为一种绿色环保的新型储能装置,超级电容器近年来发展迅速,电极材料是决定超级电容器性能与制造成本的最主要因素。碳材料因种类多样、价格廉价并具有较高的比表面积、较高的导电率和非常好的化学稳定性而被作为一种重要的电极材料广泛应用于储能元件中,主要包括活性碳、碳微球、碳纳米管、石墨烯等。碳基超级电容器是以碳材料作为主要电极材料的一类电容器。本文详细介绍了不同碳基电极材料的研究发展状况,以及碳基超级电容器的研究与应用进展。  相似文献   

3.
<正>石墨烯/炭气凝胶的制备及其结构与性能研究炭气凝胶是具有独特三维网络结构的轻质纳米中孔炭材料,适用于制备超级电容器的电极,但通常采用苯二酚(R)-甲醛(F)为原料制备的炭气凝胶,其微孔含量低,比表面积和电容量不高,限制了它在超级电容器中的应用。若采用石墨烯(GO)与炭气凝胶复合,可在一定程度上有效调控气凝胶的比表面积,但要进一步提高炭气凝胶的比电容,仍存在较大难度。湖南大学材料科学与  相似文献   

4.
为了制备性能优异的柔性超级电容器电极材料,以横向网络状分布的柔性碳纳米管薄膜为基底,通过与二氧化锰的复合,制备出碳纳米管膜/MnO_2柔性超级电容器电极材料.分别利用扫描电镜、透射电镜、拉曼光谱、X线光电子能谱、恒电流充放电和循环稳定性等测试表征材料的形貌、结构和电容性能.结果表明:碳纳米管膜/MnO_2复合材料的比电容最高可达297 F/g,且碳纳米管膜/MnO_2柔性电极材料在比电容大于200 F/g时依然拥有优良的循环稳定性.  相似文献   

5.
为了获得比电容大、工作稳定性高的柔性超级电容器,在碳纳米管膜上利用恒电流沉积法在不同沉积时间和沉积电流密度下沉积MnO_2,制备出了MnO_2/碳纳米管膜柔性超级电容器电极材料.分别利用扫描电镜和X线衍射对所得电极材料的形貌和结构进行表征,并通过恒电流充放电测试和交流阻抗谱研究了复合材料的电容性能.结果表明:复合材料的电容性能可以通过调节MnO_2的沉积电流密度和沉积时间来控制;沉积电流密度为1 A/g、沉积时间为20 min条件下制备所得MnO_2/碳纳米管膜复合材料的比电容可达356 F/g,是纯碳纳米管膜比电容的7.5倍.此外,MnO_2/碳纳米管膜复合材料的比电容经200次充放电循环后维持在初始值的96.6%,显示出良好的循环稳定性,在高性能柔性超级电容器应用方面展现了一定的前景.  相似文献   

6.
超级电容器用活性炭电极的制备及电化学性能研究   总被引:2,自引:0,他引:2  
以石油焦为原料,采用KOH活化法制备比表面积为2 170 m^2/g的高比表面积活性炭,采用该材料作为电极材料,组装成超级电容器,并对它进行了恒电流充放电实验、循环伏安实验和交流阻抗等实验,结果表明,制备的活性炭作电极材料组装的电容器具有良好的电化学性能.  相似文献   

7.
为研制低成本、高比容超级电容器的关键复合电极材料,采用涂覆热分解法,以RuCl3·2H2O为前躯体,制备二氧化钌/活性炭复合电极材料.借助扫描电镜、附着力测试、循环伏安、恒流充放电和电化学阻抗谱等检测手段,观察复合薄膜电极材料的表面形貌,分析不同涂覆量的二氧化钌/活性炭复合薄膜电极的性能.研究结果表明:二氧化钌/活性炭复合电极材料具有良好的电化学稳定性,涂覆热分解最佳涂覆数为4次,复合薄膜的比表面积为321.4 m2/g,附着力为11.4 MPa;在H2s04溶液浓度为0.5 mol/L、扫描速率20 mV/s条件下,复合电极材料的比电容为422 F/g,内阻为0.33 Ω;经300次充放电后,电容量持续为98.8%.  相似文献   

8.
超级电容器电极材料的结构设计   总被引:1,自引:0,他引:1  
超级电容器由于具有功率密度大和循环寿命长的优势受到了广泛的关注.电极材料是超级电容器的核心部分,是发展高性能超级电容器的关键要素.电极材料的组成、晶体结构、微纳结构形态等对其电化学性能具有重大影响.赝电容电极材料的性能与晶体内部的孔道结构密切相关,具有大孔道的电极材料其比容量明显高于只含有小孔道的电极材料.合理调控电极材料微纳结构形态如设计多孔结构、中空结构有利于增大电极的电化学活性表面,进而获得更多的电荷存储量,是提高储能性能的有效途径之一.将赝电容电极材料与导电基体复合生长可以提高材料整体的电导率,进而提高材料的比容量与倍率性能.通过对超级电容器电极材料结构的合理设计进而实现其储能性能的提高已经成为电化学储能领域的研究热点,对于推动超级电容器的发展具有重要意义.  相似文献   

9.
导电剂能否在电极材料中形成良好的导电网络是影响超级电容器性能的关键因素之一. 以改进St?ber法合成了高比表面积且具有多级孔结构的超细空心炭微球,以其为电极材料,对比研究了碳纳米管/炭黑复合导电剂与单一导电剂对基于超细空心炭微球超级电容器性能的影响. 研究发现,在0.2 A/g的电流密度下,采用复合导电剂时其比电容为205.7 F/g,远高于单一导电剂时的比电容. 尤其在100 A/g的大电流密度下,采用复合导电剂时的比电容高达104.0 F/g,相比炭黑导电剂提高了275%. 分析表明,纤维状的碳纳米管和炭黑可在本身易团聚的超细空心炭微球中形成点-线协同作用的导电网络,这是提升超级电容器性能的主要原因.   相似文献   

10.
掺锂聚苯胺/活性炭超级电容器电极材料的制备及电性能   总被引:1,自引:0,他引:1  
采用苯胺在改性活性炭表面原位聚合的方法,合成了掺锂的超级电容器用聚苯胺/活性炭复合电极材料.用扫描电镜(SEM)研究了掺杂前后该复合材料的形态.在6mol/LKOH溶液中,以Hg/HgO电极为参比电极对电极材料进行循环伏安、恒流充放电、交流阻抗等电化学性能的测试,考察了掺杂锂盐后作为超级电容器的电极材料的电极性能.结果表明,掺杂锂盐后的复合电极材料的比容量有很明显的提高,由未掺杂锂时的372F/g提高到466F/g。多次循环充放电后电容量的保留率也得到显著的提高。  相似文献   

11.
超级电容器是介于可充电电池和传统电容器之间的一种新型储能器件。它具有高功率密度、快速充放电和环境友好等优点。在众多应用于超级电容器的电极材料中,金属有机骨架材料因具有大的比表面积,可灵活调控的组成和结构,是十分理想的电极材料之一,又由于其易于合成、独特的结构和反应特性,也是制备纳米结构电极材料的理想模板之一。以沸石咪唑骨架(zeolitic lmidazolate framework,ZIF)-67为前驱体,采用二水合钼酸钠盐溶液刻蚀的方法成功制备了空心CoMo 层状双金属氢氧化物(layered double hydroxides, LDH)纳米笼结构,同时还讨论了钼酸钠的用量对最终产物形貌和性能的影响。当用作超级电容器电极材料时,所制备的空心Co1Mo5 LDH在1 A/g的时候最多可提供578 F/g的比电容,当电流密度增加到10 A/g时,比电容保持在346 F/g。与活性炭组装成非对称超级电容器后,该储能器件在功率密度750 W/kg时,能量密度最大可达到21.25 W·h/kg。在5 A/g的电流密度下,经过15 000次充放电循环后,仍保持了90%的初始容量。  相似文献   

12.
A three-dimensional elastic carbon nanotube aerogel is fabricated via a simple solution-based strategy using Te nanowires as templates, which can be recycled. The pipe diameter and wall thickness of the carbon nanotube are strongly dependent on the diameter of the Te nanowires and carbon source. The obtained free-standing carbon nanotube aerogel with a large specific surface area (up to 1865 m2?g-1) is promising as an electrode material for supercapacitors. After combination with MnO2, the capacitor exhibits a specific capacitance of 360.4 F?g-1 at a current of 1 A?g-1 and retention of 97% after 2000 cycles. The high power capabilities and good stability make it a promising candidate as an electrode for supercapacitors.  相似文献   

13.
Morphological structure and physicochemical properties of nanotube TiO2 were investigated. It was found that the TiO2 nanotube consisted of 2–5 monolayers of TiO2 molecules, and its inner diameter was between 4.2 and 5.9 nm. The nanotube TiO2 powder had high specific surface area and pore volume (379 m2/g and 1.431 cm3/g respectively) and its decolorization activity for Reactive Brilliant Red X-3B was 2 times higher than that of raw TiO2 (p-25). This new type of TiO2 was hopeful for application in photocatalysis and composite nanomaterial.  相似文献   

14.
TiO_2 has been widely studied as an important electrode material for electrochemical energy storage.Understanding its relationship between textural properties and electrochemical characteristics is essential to boosting its practical performances. Herein, Aeroxide P25 TiO_2 nanoparticles annealing at different temperatures(400–600 °C) were investigated as an anode material of lithium ion battery. Their evolution in crystal phase and microstructural characteristics were characterized by XRD and BET surface analysis, and their lithium storage properties in half-cells were evaluated by various electrochemical analyses, including cyclic voltammetry, cycling testing, and electrochemical impedance spectroscopy. It was found that the lithium storage properties were critically dependent on the size of TiO_2 anode materials. Pristine P25 initially exhibited the highest initial discharge specific capacity due to its smallest particle size; however, rapid capacity loss occurred during extended cycling. The annealing process was found to effectively enhance the cycling stability of TiO_2 although possessing a large particle size and smaller surface area. Typically, P400 showed the best performances in cycling stability, capacity retention ratio, and rate capability, which is mainly attributed to the synergistic effect of high crystallinity, reasonable particle size, and less internal resistance. This study provides an instance of optimizing the textural properties of metal oxides for advanced LIB anode material applications.  相似文献   

15.
This study focuses on the development of a hydrothermal method for the rapid synthesis of good quality copper benzene-1,3,5-tricarboxylate(referred to as HKUST-1)with high yield under mild preparation conditions to address the issues associated with reported methods.Different synthesis conditions and activation methods were studied to understand their influence on the properties of HKUST-1.It was found that mixing the precursors at50°C for 3 h followed by activation via methanol refluxing led to the formation of a product with the highest BET specific surface area of 1615 m~2/g and a high yield of 84.1%.The XRD and SEM data illustrated that the product was highly crystalline.The sample was also tested on its capacity in CO_2 adsorption.The results showed strong correlation between surface area of the sample and its CO_2 uptake at 1 bar and 27°C.The HKUST-1 prepared in this study demonstrated a high CO_2 uptake capacity of 4.2 mmol/g.It is therefore concluded that this novel and efficient method can be used in the rapid preparation of HKUST-1 with high surface area and CO_2 uptake capacity.  相似文献   

16.
采用Hummers法和水热法,制备石墨烯和碳量子点溶液作为前驱体,然后通过一步煅烧法制得石墨烯-碳量子点复合材料。借助SEM、UV-Vis、FTIR等手段,对样品的形貌和结构进行表征;利用循环伏安法(CV)、差分脉冲伏安法(DPV)及恒流充放电循环测试等,重点考察了样品的电化学性能。结果表明,在石墨烯表面负载碳量子点可增加材料的比表面积并改善其机械性能,由于活性位点的增加,所制石墨烯-碳量子点复合电极具有较好的可逆性及电化学活性;在检测不同浓度双氧水时,复合电极的灵敏度为纯石墨烯电极的1.4倍左右;石墨烯-碳量子点复合材料作为锂离子电池负极使用时,与纯石墨烯材料相比具有更好的循环稳定性,且容量保持率提高了1.67倍。  相似文献   

17.
In order to obtain superior electrode performances in capacitive deionization(CDI), the electrophoretic deposition(EPD) was introduced as a novel strategy for the fabrication of carbon nanotube(CNT) electrode.Preparation parameters, including the concentration of slurry components, deposition time and electric field intensity, were mainly investigated and optimized in terms of electrochemical characteristic and desalination performance of the deposited CNT electrode. The SEM image shows that the CNT material was deposited homogeneously on the current collector and a non-crack surface of the electrode was obtained. An optimal preparation condition of the deposited CNT electrode was obtained and specified as the Al(NO3)3 M concentration of 1.3 × 10~(-2) mol/L, the deposition time of 30 min and the electric field intensity of 15 V/cm. The obtained electrode performs an increasing specific mass capacitance of 33.36 F/g and specific adsorption capacity of 23.93 mg/g, which are 1.62 and 1.85 times those of the coated electrode respectively. The good performance of the deposited CNT electrode indicates the promising application of the EPD methodology in subsequent research and fabrication of the CDI electrodes for CDI process.  相似文献   

18.
利用水热法合成了纳米棒状的MnO_2/碳纳米球(CNPs)作为电化学超级电容器的电极材料.利用场发射扫描电镜(FESEM)、X射线衍射光谱分析(XRD)对样品的微观形貌、物相进行分析;利用循环伏安法和恒电流充放电测试材料的电化学性能.结果表明:纳米棒状MnO_2/CNPs复合材料具有良好的电化学性能.在0.1 A/g的电流密度,1 mol/L Na_2SO_4电解液中,电极材料的比电容高达305.6 F/g,远高于纯碳球的比电容(49.3 F/g),当电流密度增至5 A/g时,材料的比电容为235 F/g,比电容仍能保持76.9%.  相似文献   

19.
Single metal-organic coordination polymers have limited functions as precursors for porous carbon electrode materials.The construction of bimetallic organic coordination polymers can effectively utilize the advantages of each single metal-organic coordination polymer to improve the performance of the derived carbon materials.Herein,High performance nitrogen-doped porous carbon(BC_(Fe–Ni))have been produced by directly carbonizing bimetallic organic coordination polymers formed by 4,4'-bipyridine(BPD)reaction with Fe Cl_3and NiCl_2.The BC_(Fe–Ni) exhibits high nitrogen content(12.66 at%),large specific surface area(1049.51 m~2g~(-1))and hierarchical porous structure,which contributes to an excellent gravimetric specific gravity of 320.5 Fg~(-1)and 108%of specific capacitance retention after 10000 cycles.The BC_(Fe–Ni)assembled symmetrical supercapacitor shows an energy density of 18.3 Wh kg~(-1)at a power density of 350 W kg~(-1).It is expected that the as-prepared N-doped porous carbon derived from bimetallic-organic coordination polymer is a promising electrode material for high performance energy storage devices.  相似文献   

20.
This work reports the effects of activation temperatures on the porous development and electrochemical performance of activated carbons. Herein, activated carbons were prepared from the biowaste of mangosteen peel by using KOH activation at temperatures of 400, 600, and 800 ?°C. The results demonstrate that the specific surface area increases with increasing the activation temperatures in which the well-developed porous structure after KOH activation at 800 ?°C provides the highest specific surface area of 1039 ?m2 ?g?1. At 600 ?°C, the activated carbon delivers the highest specific capacitance value of 182 ?F ?g?1 ?at a current density of 0.5 ?A ?g?1 in 3 ?M KOH aqueous electrolyte. This is correlated well with its high micropore fractions (99%). Moreover, it was found that the activation temperature changes the major contribution of oxygen-containing functional group on surface of activated carbon, which is beneficial for the enhancement of the specific capacitance value of activated carbon at the temperature of 600 ?°C. This work suggests that the activation temperature is a key to optimizing the electrochemical performance of activated carbons. Overall, our activated carbons can be considered as a strong candidate for use as electrode materials in supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号